42 research outputs found

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∼10 μm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data

    Four‐dimensional‐STEM analysis of the phyllosilicate‐rich matrix of Ryugu samples

    Get PDF
    Ryugu asteroid grains brought back to the Earth by the Hayabusa2 space mission are pristine samples containing hydrated minerals and organic compounds. Here, we investigate the mineralogy of their phyllosilicate-rich matrix with four-dimensional scanning transmission electron microscopy (4D-STEM). We have identified and mapped the mineral phases at the nanometer scale (serpentine, smectite, pyrrhotite), observed the presence of Ni-bearing pyrrhotite, and identified the serpentine polymorph as lizardite, in agreement with the reported aqueous alteration history of Ryugu. Furthermore, we have mapped the d-spacings of smectite and observed a broad distribution of values, ranging from 1 to 2 nm, with an average d-spacing of 1.24 nm, indicating significant heterogeneity within the sample. Such d-spacing variability could be the result of either the presence of organic matter trapped in the interlayers or the influence of various geochemical conditions at the submicrometer scale, suggestive of a range of organic compounds and/or changes in smectite crystal chemistry

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss

    Identification of Novel Senescent Markers in Small Extracellular Vesicles

    No full text
    Senescent cells exhibit several typical features, including the senescence-associated secretory phenotype (SASP), promoting the secretion of various inflammatory proteins and small extracellular vesicles (EVs). SASP factors cause chronic inflammation, leading to age-related diseases. Recently, therapeutic strategies targeting senescent cells, known as senolytics, have gained attention; however, noninvasive methods to detect senescent cells in living organisms have not been established. Therefore, the goal of this study was to identify novel senescent markers using small EVs (sEVs). sEVs were isolated from young and senescent fibroblasts using three different methods, including size-exclusion chromatography, affinity column for phosphatidylserine, and immunoprecipitation using antibodies against tetraspanin proteins, followed by mass spectrometry. Principal component analysis revealed that the protein composition of sEVs released from senescent cells was significantly different from that of young cells. Importantly, we identified ATP6V0D1 and RTN4 as novel markers that are frequently upregulated in sEVs from senescent and progeria cells derived from patients with Werner syndrome. Furthermore, these two proteins were significantly enriched in sEVs from the serum of aged mice. This study supports the potential use of senescent markers from sEVs to detect the presence of senescent cells in vivo

    In situ nuclear DNA methylation in dilated cardiomyopathy: an endomyocardial biopsy study

    No full text
    Abstract Aims Although distinct DNA methylation patterns have been reported, its localization and roles remain to be defined in heart failure. We investigated the cellular and subcellular localization of DNA methylation and its pathophysiological significance in human failing hearts. Methods and results Using left ventricular (LV) endomyocardial biopsy specimens from 75 patients with dilated cardiomyopathy (DCM; age: 58 ± 14 years old, %female: 32%) and 20 patients without heart failure (controls; age: 56 ± 17 years old, %female: 45%), we performed immunohistochemistry and immunoelectron microscopy for methylated DNA, 5‐methylcytosine (5‐mC). We next investigated possible relations of the incidence of 5‐mC‐positive (%5‐mC+) cardiomyocytes with clinicopathological parameters. Immunopositivity for 5‐mC was detected in the cardiomyocytes and other cell types. The %5‐mC+ cardiomyocytes was significantly greater in DCM hearts than in controls (57 ± 13% in DCM vs. 25 ± 12% in controls, P < 0.0001). The localization of 5‐mC immunopositivity in cardiomyocyte nuclei coincided well with that of heterochromatin, as confirmed by immunoelectron microscopy. Substantial DNA methylation was also observed in interstitial non‐cardiomyocytes, but the incidences did not differ between control and DCM hearts (39 ± 7.9% in DCM vs. 41 ± 10% in controls, P = 0.4099). In DCM patients, the %5‐mC+ cardiomyocytes showed a significant inverse correlation with LV functional parameters such as heart rate (r = 0.2391, P = 0.0388), end‐diastolic pressure (r = 0.2397, P = 0.0397), and ejection fraction (r = −0.2917, P = 0.0111) and a positive correlation with LV dilatation (volume index at diastole; r = 0.2442, P = 0.0347; and volume index at systole; r = 0.3136, P = 0.0062) and LV hypertrophy (mass index; r = 0.2287, P = 0.0484)—that is, LV remodelling parameters. No significant correlations between DNA methylation and the histological parameters of the biopsies, including cardiomyocyte hypertrophy, fibrosis, and inflammatory cell infiltration, were noted. Conclusions The present study revealed increased nuclear DNA methylation in cardiomyocytes, but not other cell types, from DCM hearts, with predominant localization in the heterochromatin. Its significant relations with LV functional and remodelling parameters imply a pathophysiological significance of DNA methylation in heart failure
    corecore