15 research outputs found

    Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial

    Get PDF
    Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range. Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (≥10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL). Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 ± 1.68 h/day [10.1 %±7.0 %] vs 3.10 ± 2.28 h/day [12.9 %±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001). Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM

    Discovery of Highly Potent and Selective Matrix Metalloproteinase‑7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides

    No full text
    Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1′ subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes

    Discovery of Highly Potent and Selective Matrix Metalloproteinase‑7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides

    No full text
    Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1′ subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes

    Discovery of Highly Potent and Selective Matrix Metalloproteinase‑7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides

    No full text
    Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1′ subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes

    Discovery of Highly Potent and Selective Matrix Metalloproteinase‑7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides

    No full text
    Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1′ subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes

    Discovery of Highly Potent and Selective Matrix Metalloproteinase‑7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides

    No full text
    Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1′ subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes

    Discovery of Highly Potent and Selective Matrix Metalloproteinase‑7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides

    No full text
    Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1′ subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes

    Discovery of Highly Potent and Selective Matrix Metalloproteinase‑7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides

    No full text
    Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1′ subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes
    corecore