42 research outputs found

    Cognitive Profile of Idiopathic Normal Pressure Hydrocephalus

    Get PDF
    Background/Aims: Frontal lobe dysfunction is believed to be a primary cognitive symptom in idiopathic normal pressure hydrocephalus (iNPH); however, the neuropsychology of this disorder remains to be fully investigated. The objective of this study was to delineate a comprehensive profile of cognitive dysfunction in iNPH and evaluate the effects of cerebrospinal fluid (CSF) shunt surgery on cognitive dysfunction. Methods: A total of 32 iNPH patients underwent neuropsychological testing of memory, attention, language, executive function, and visuoperceptual and visuospatial abilities. Of these 32 patients, 26 were reevaluated approximately 1 year following CSF shunt surgery. The same battery of tests was performed on 32 patients with Alzheimer’s disease (AD) and 30 healthy elderly controls. Results: The iNPH patients displayed baseline deficits in attention, executive function, memory, and visuoperceptual and visuospatial functions. Impairments of attention, executive function, and visuoperceptual and visuospatial abilities in iNPH patients were more severe than in those with AD, whereas the degree of memory impairment was comparable to that in AD patients. A significant improvement in executive function was observed following shunt surgery. Conclusion: Patients with iNPH are impaired in various aspects of cognition involving both ‘frontal’ executive functions and ‘posterior cortical’ functions. Shunt treatment can ameliorate executive dysfunction

    Effect of brain acidification on depression-related behaviors in diabetes mellitus

    Get PDF
    Major depressive disorder (depression) is a leading cause of disability. The severity of depression is affected by many factors, one of which being comorbidity with diabetes mellitus (DM). The comorbidity of depression with DM is a major public health concern due to the high incidence of both conditions and their mutually exacerbating pathophysiology. However, the mechanisms by which DM exacerbates depression remain largely unknown, and elucidating these regulatory mechanisms would contribute to a significant unmet clinical need. We generated a comorbid mouse model of depression and DM (comorbid model), which was extensively compared with depression and DM models. Depressive and anhedonic phenotypes were more severe in the comorbid model. We thus concluded that the comorbid model recapitulated exacerbated depression-related behaviors comorbid with DM in clinic. RNA sequencing analysis of prefrontal cortex tissue revealed that the brain pH homeostasis gene set was one of the most affected in the comorbid model. Furthermore, brain pH negatively correlated with anhedonia-related behaviors in the depression and comorbid models. By contrast, these correlations were not detected in DM or control group, neither of which had been exposed to chronic stress. This suggested that the addition of reduced brain pH to stress-exposed conditions had synergistic and aversive effects on anhedonic phenotypes. Because brain pH was strongly correlated with brain lactate level, which correlated with blood glucose levels, these findings highlight the therapeutic importance of glycemic control not only for DM, but also for psychiatric problems in patients with depression comorbid with DM

    Calcineurin knockout mice show a selective loss of small spines

    Get PDF
    Calcineurin is required for long-term depression and activity-dependent spine shrinkage, and calcineurin mutations have been identified in patients with schizophrenia. Moreover, mice with conditional knockout of calcineurin B (CNB-KO) exhibit behavioral abnormalities suggestive of schizophrenia. Changes in the dendritic spines of these mice, however, have not been investigated. We therefore examined the dendritic spines of CNB-KO mice, and observed a significant reduction in small spines and an increase in large spines in the prefrontal and visual cortices. The effect of CNB-KO on the spine sizes was relatively moderate, possibly due to the presence of spontaneous fluctuations (dynamics) in the dendritic spines themselves. Thus, CNB-KO mice showed a spine phenotype similar to those recently reported in patients with schizophrenia

    Labelling and optical erasure of synaptic memory traces in the motor cortex

    Get PDF
    Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), which can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble

    Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment

    Get PDF

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Seismic exploration at Fuji volcano with active sources : The outline of the experiment and the arrival time data

    Get PDF
    Fuji volcano (altitude 3,776m) is the largest basaltic stratovolcano in Japan. In late August and early September 2003, seismic exploration was conducted around Fuji volcano by the detonation of 500 kg charges of dynamite to investigate the seismic structure of that area. Seismographs with an eigenfrequency of 2 Hz were used for observation, positioned along a WSW-ENE line passing through the summit of the mountain. A total of 469 seismic stations were installed at intervals of 250-500 m. The data were stored in memory on-site using data loggers. The sampling interval was 4 ms. Charges were detonated at 5 points, one at each end of the observation line and 3 along its length. The first arrival times and the later-phase arrival times at each station for each detonation were recorded as data. P-wave velocities in the surface layer were estimated from the travel time curves near the explosion points, with results of 2.5 km/s obtained for the vicinity of Fuji volcano and 4.0 km5/s elsewhere
    corecore