25 research outputs found

    Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles

    Get PDF
    Using quantitative light microscopy and a modified immunoelectron microscopic technique, we have characterized the entry pathway of the cholera toxin binding subunit (CTB) in primary embryonic fibroblasts. CTB trafficking to the Golgi complex was identical in caveolin-1null (Cav1βˆ’/βˆ’) mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs. CTB entry in the Cav1βˆ’/βˆ’ MEFs was predominantly clathrin and dynamin independent but relatively cholesterol dependent. Immunoelectron microscopy was used to quantify budded and surface-connected caveolae and to identify noncaveolar endocytic vehicles. In WT MEFs, a small fraction of the total Cav1-positive structures were shown to bud from the plasma membrane (2% per minute), and budding increased upon okadaic acid or lactosyl ceramide treatment. However, the major carriers involved in initial entry of CTB were identified as uncoated tubular or ring-shaped structures. These carriers contained GPI-anchored proteins and fluid phase markers and represented the major vehicles mediating CTB uptake in both WT and caveolae-null cells

    The Distribution of Phosphatidylinositol 4,5-Bisphosphate in Acinar Cells of Rat Pancreas Revealed with the Freeze-Fracture Replica Labeling Method

    Get PDF
    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a phospholipid that has been implicated in multiple cellular activities. The distribution of PI(4,5)P2 has been analyzed extensively using live imaging of the GFP-coupled phospholipase C-Ξ΄1 pleckstrin homology domain in cultured cell lines. However, technical difficulties have prevented the study of PI(4,5)P2 in cells of in vivo tissues. We recently developed a method to analyze the nanoscale distribution of PI(4,5)P2 in cultured cells by using the quick-freezing and freeze-fracture replica labeling method. In principle, this method can be applied to any cell because it does not require the expression of artificial probes. In the present study, we modified the method to study cells of in vivo tissues and applied it to pancreatic exocrine acinar cells of the rat. We found that PI(4,5)P2 in the plasma membrane is distributed in an equivalent density in the apical and basolateral domains, but exists in a significantly higher concentration in the gap junction. The intracellular organelles did not show labeling for PI(4,5)P2. The results are novel or different from the reported distribution patterns in cell lines and highlight the importance of studying cells differentiated in vivo

    D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades

    Full text link
    We perform a systematic analysis of the D-brane charges associated with string theory realizations of d=3 gauge theories, focusing on the examples of the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction of these theories and their dual string theory backgrounds in the supergravity approximation. In the N=4 case we generalize the previously known gravitational duals to arbitrary values of the gauge couplings, and present a precise mapping between the gravity and field theory parameters. In the N=3 case, which (for some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter theory in the IR, we argue that the careful analysis of the charges leads to a shift in the value of the B-field in the IR solution by 1/2, in units where its periodicity is one, compared to previous claims. We also suggest that the N=3 theories may exhibit, for some values of N and M, duality cascades similar to those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde

    Inward rectifier K +

    No full text

    Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis

    No full text
    One of the features of weaver mutant mice is male infertility, which suggests that Kir3.2, a G-protein-gated inwardly rectifying K+ channel subunit, may be involved in spermatogenesis. Therefore, we have characterized the Kir3.2 isoform in mouse testis using immunological, molecular biological and electrophysiological techniques.Testicular membrane contained a protein that was recognized by the antibody specific to the C-terminus of Kir3.2c (aG2C-3). Its molecular mass was β‰ˆ45 kDa, which was smaller than that of Kir3.2c (β‰ˆ48 kDa). The immunoprecipitant obtained from testis with aG2C-3 contained a single band of the 45 kDa protein, which could not be detected by the antibody to the N-terminus common to the known Kir3.2 isoforms (aG2N-2).A novel alternative splicing variant of Kir3.2, designated Kir3.2d, was isolated from a mouse testis cDNA library. The cDNA had an open reading frame encoding 407 amino acids, whose molecular mass was calculated to be β‰ˆ45 kDa. Kir3.2d was 18 amino acids shorter than Kir3.2c at its N-terminal end, which was the only difference between the two clones. The 18 amino acid region possesses the epitope for aG2N-2.In heterologous expression systems of both Xenopus oocytes and mammalian cells (HEK 293T), Kir3.2d either alone or with Kir3.1 exhibited G-protein-gated inwardly rectifying K+ channel activity.Prominent Kir3.2d immunoreactivity in the testis was detected exclusively in the acrosomal vesicles of spermatids, while Kir3.1 immunoreactivity was diffuse in the spermatogonia and spermatocytes. These results indicate the possibility that the testicular variant of Kir3.2, Kir3.2d, may assemble to form a homomultimeric G-protein-gated K+ channel and be involved in the development of the acrosome during spermiogenesis
    corecore