87 research outputs found

    Vibratory tactile display for textures

    Get PDF
    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures

    A case of gastric granular cell tumor

    Get PDF
    We herein describe an extremely rare case of gastric granular cell tumor (GCT). The gastric submucosal tumor showed a central tiny depression on the surface with a molar tooth-like appearance on esophagogastroduodenoscopy. Our case highlights that gastric GCT should be considered as differential diagnosis of gastric submucosal tumors

    Future efforts to contribute to the International Height Reference System (IHRS)

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [S] Future plan of Antarctic research: Towards phase X of the Japanese Antarctic Research Project (2022-2028) and beyond, Tue. 3 Dec. / Entrance Hall (1st floor) at National Institute of Polar Research (NIPR

    The role of the SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma

    Get PDF
    ATP-dependent chromatin remodeling complexes are a group of epigenetic regulators that can alter the assembly of nucleosomes and regulate the accessibility of transcription factors to DNA in order to modulate gene expression. One of these complexes, the SWI/SNF chromatin remodeling complex is mutated in more than 20% of human cancers. We have investigated the roles of the SWI/SNF complex in pancreatic ductal adenocarcinoma (PDA), which is the most lethal type of cancer. Here, we reviewed the recent literature regarding the role of the SWI/SNF complex in pancreatic tumorigenesis and current knowledge about therapeutic strategies targeting the SWI/SNF complex in PDA. The subunits of the SWI/SNF complex are mutated in 14% of human PDA. Recent studies have shown that they have context-dependent oncogenic or tumor-suppressive roles in pancreatic carcinogenesis. To target its tumor-suppressive properties, synthetic lethal strategies have recently been developed. In addition, their oncogenic properties could be novel therapeutic targets. The SWI/SNF subunits are potential therapeutic targets for PDA, and further understanding of the precise role of the SWI/SNF complex subunits in PDA is required for further development of novel strategies targeting SWI/SNF subunits against PDA

    Promoter-Level Transcriptome Identifies Stemness Associated With Relatively High Proliferation in Pancreatic Cancer Cells

    Get PDF
    Both pancreatic intraepithelial neoplasia (PanIN), a frequent precursor of pancreatic cancer, and intraductal papillary mucinous neoplasm (IPMN), a less common precursor, undergo several phases of molecular conversions and finally develop into highly malignant solid tumors with negative effects on the quality of life. We approached this long-standing issue by examining the following PanIN/IPMN cell lines derived from mouse models of pancreatic cancer: Ptf1a-Cre; KrasG12D; p53f/+ and Ptf1a-Cre; KrasG12D; and Brg1f/f pancreatic ductal adenocarcinomas (PDAs). The mRNA from these cells was subjected to a cap analysis of gene expression (CAGE) to map the transcription starting sites and quantify the expression of promoters across the genome. Two RNA samples extracted from three individual subcutaneous tumors generated by the transplantation of PanIN or IPMN cancer cell lines were used to generate libraries and Illumina Seq, with four RNA samples in total, to depict discrete transcriptional network between IPMN and PanIN. Moreover, in IPMN cells, the transcriptome tended to be enriched for suppressive and inhibitory biological processes. In contrast, the transcriptome of PanIN cells exhibited properties of stemness. Notably, the proliferation capacity of the latter cells in culture was only minimally constrained by well-known chemotherapy drugs such as GSK690693 and gemcitabine. The various transcriptional factor network systems detected in PanIN and IPMN cells reflect the distinct molecular profiles of these cell types. Further, we hope that these findings will enhance our mechanistic understanding of the characteristic molecular alterations underlying pancreatic cancer precursors. These data may provide a promising direction for therapeutic research

    SNAIL2 contributes to tumorigenicity and chemotherapy resistance in pancreatic cancer by regulating IGFBP2

    Get PDF
    Pancreatic cancer has an extremely poor prognosis because of its resistance to conventional therapies. Cancer stem cell (CSC)-targeted therapy is considered a promising approach for this disease. Epithelial-mesenchymal transition-inducing transcription factors (EMT-TFs) contribute to CSC properties in some solid tumors; however, this mechanism has not been fully elucidated in pancreatic cancer. Zinc finger protein, SNAIL2 (also known as SLUG), is a member of the SNAIL superfamily of EMT-TFs and is commonly overexpressed in pancreatic cancer. Patients exhibiting high SNAIL2 expression have a poor prognosis. In this study, we showed that the suppression of SNAIL2 expression using RNA interference decreased tumorigenicity in vitro (sphere formation assay) and in vivo (xenograft assay) in 2 pancreatic cancer cell lines, KLM1 and KMP5. In addition, SNAIL2 suppression resulted in increased sensitivity to gemcitabine and reduced the expression of CD44, a pancreatic CSC marker. Moreover, experiments on tumor spheroids established from surgically resected pancreatic cancer tissues yielded similar results. A microarray analysis revealed that the mechanism was mediated by insulin-like growth factor (IGF) binding protein 2. These results indicate that IGFBP2 regulated by SNAIL2 may represent an effective therapeutic target for pancreatic cancer

    Efficacy and Safety of External-beam Radiation Therapy for Unresectable Primary or Local Recurrent Cholangiocarcinoma

    Get PDF
    Background/Aim: Treatment options for unresectable cholangiocarcinoma are limited. The aim of the study was to evaluate the clinical outcomes of definitive external-beam radiation therapy (EBRT) for patients with unresectable cholangiocarcinoma. Patients and Methods: Patients with unresectable primary cholangiocarcinoma, or local recurrent cholangiocarcinoma after primary surgery, without distant metastasis who received definitive EBRT (≥45 Gy) between January 2006 and December 2020 at our Institution were analyzed retrospectively. EBRT was basically performed using conventional fractionation (1.8-2 Gy per fraction). Prophylactic nodal irradiation was not performed. Results: A total of 21 consecutive patients were analyzed: 7 primary and 14 recurrent cases. The median age was 70 (range=38–85) years at initiation of EBRT. A median dose of 54 (range=45-60) Gy comprising 1.8 (range=1.8-3) Gy per fraction was administered to the primary/recurrent local tumor site. The median follow-up period was 21.6 months. The 2-year overall survival, cause-specific survival, progression-free survival, and local recurrence-free rates were 35.7, 35.7, 16.1, and 32.7%, respectively. Long-term local control (>2 years after EBRT) was achieved in 19.0%. Grade 3 toxicities related to EBRT were observed in 4.8% (duodenum hemorrhage). No grade 4 or higher toxicities were observed. Conclusion: Definitive EBRT for unresectable cholangiocarcinoma was feasible and achieved long-term local control in a subset of patients. As the avoidance of local recurrence may lead to the benefits of prolonging biliary patency and subsequently alleviating the need for an invasive procedure for biliary drainage, EBRT could be one sustainable therapeutic option for patients with unresectable cholangiocarcinoma

    Epithelial EP4 plays an essential role in maintaining homeostasis in colon

    Get PDF
    Colonic epithelial cells comprise the mucosal barrier, and their dysfunction promotes microbial invasion from the gut lumen and induces the development of intestinal inflammation. The EP4 receptor is known to mediate the protective effect of prostaglandin (PG) E2 in the gastrointestinal tract; however, the exact role of epithelial EP4 in intestinal pathophysiology remains unknown. In the present study, we aimed to investigate the role of epithelial EP4 in maintaining colonic homeostasis by characterizing the intestinal epithelial cell-specific EP4 knockout (EP4 cKO) mice. Mice harboring the epithelial EP4 deletion showed significantly lower colonic crypt depth and lower numbers of secretory cell lineages, as well as impaired epithelial cells in the colon. Interestingly, EP4-deficient colon epithelia showed a higher number of apoptotic cells. Consistent with the defect in mucosal barrier function of colonic epithelia and secretory cell lineages, EP4 cKO colon stroma showed enhanced immune cell infiltration, which was accompanied by increased production of inflammatory cytokines. Furthermore, EP4-deficient colons were susceptible to dextran sulfate sodium (DSS)-induced colitis. Our study is the first to demonstrate that epithelial EP4 loss resulted in potential "inflammatory" status under physiological conditions. These findings provided insights into the crucial role of epithelial PGE2/EP4 axis in maintaining intestinal homeostasis

    JNK pathway plays a critical role for expansion of human colorectal cancer in the context of BRG1 suppression

    Get PDF
    Tumor stem cells (TSCs), capable of self-renewal and continuous production of progeny cells, could be potential therapeutic targets. We have recently reported that chromatin remodeling regulator Brg1 is required for maintenance of murine intestinal TSCs and stemness feature of human colorectal cancer (CRC) cells by inhibiting apoptosis. However, it is still unclear how BRG1 suppression changes the underlying intracellular mechanisms of human CRC cells. We found that Brg1 suppression resulted in upregulation of the JNK signaling pathway in human CRC cells and murine intestinal TSCs. Simultaneous suppression of BRG1 and the JNK pathway, either by pharmacological inhibition or silencing of c-JUN, resulted in even stronger inhibition of the expansion of human CRC cells compared to Brg1 suppression alone. Consistently, high c-JUN expression correlated with worse prognosis for survival in human CRC patients with low BRG1 expression. Therefore, the JNK pathway plays a critical role for expansion and stemness of human CRC cells in the context of BRG1 suppression, and thus a combined blockade of BRG1 and the JNK pathway could be a novel therapeutic approach against human CRC

    Context-Dependent Roles of Hes1 in the Adult Pancreas and Pancreatic Tumor Formation

    Get PDF
    [Background & Aims] The Notch signaling pathway is an important pathway in the adult pancreas and in pancreatic ductal adenocarcinoma (PDAC), with hairy and enhancer of split-1 (HES1) as the core molecule in this pathway. However, the roles of HES1 in the adult pancreas and PDAC formation remain controversial. [Methods] We used genetically engineered dual-recombinase mouse models for inducing Hes1 deletion under various conditions. [Results] The loss of Hes1 expression in the adult pancreas did not induce phenotypic alterations. However, regeneration was impaired after caerulein-induced acute pancreatitis. In a pancreatic intraepithelial neoplasia (PanIN) mouse model, PanINs rarely formed when Hes1 deletion preceded PanIN formation, whereas more PanINs were formed when Hes1 deletion succeeded PanIN formation. In a PDAC mouse model, PDAC formation was also enhanced by Hes1 deletion after PanIN/PDAC development; therefore, Hes1 promotes PanIN initiation but inhibits PanIN/PDAC progression. RNA sequencing and chromatin immunoprecipitation-quantitative polymerase chain reaction revealed that Hes1 deletion enhanced epithelial-to-mesenchymal transition via Muc5ac up-regulation in PDAC progression. The results indicated that HES1 is not required for maintaining the adult pancreas under normal conditions, but is important for regeneration during recovery from pancreatitis; moreover, Hes1 plays different roles, depending on the tumor condition. [Conclusions] Our findings highlight the context-dependent roles of HES1 in the adult pancreas and pancreatic cancer
    corecore