214 research outputs found

    Molecular Biomarkers of Embryonic Stem Cells

    Get PDF

    Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum

    Get PDF
    AbstractCells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP), which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively

    Enhanced in vivo osteogenesis by nanocarrier-fused bone morphogenetic protein-4

    Get PDF
    Purpose: Bone defects and nonunions are major clinical skeletal problems. Growth factors are commonly used to promote bone regeneration; however, the clinical impact is limited because the factors do not last long at a given site. The introduction of tissue engineering aimed to deter the diffusion of these factors is a promising therapeutic strategy. The purpose of the present study was to evaluate the in vivo osteogenic capability of an engineered bone morphogenetic protein-4 (BMP4) fusion protein. Methods: BMP4 was fused with a nanosized carrier, collagen-binding domain (CBD), derived from fibronectin. The stability of the CBD-BMP4 fusion protein was examined in vitro and in vivo. Osteogenic effects of CBD-BMP4 were evaluated by computer tomography after intramedullary injection without a collagen-sponge scaffold. Recombinant BMP-4, CBD, or vehicle were used as controls. Expressions of bone-related genes and growth factors were compared among the groups. Osteogenesis induced by CBD-BMP4, BMP4, and CBD was also assessed in a bone-defect model. Results: In vitro, CBD-BMP4 was retained in a collagen gel for at least 7 days while BMP4 alone was released within 3 hours. In vivo, CBD-BMP4 remained at the given site for at least 2 weeks, both with or without a collagen-sponge scaffold, while BMP4 disappeared from the site within 3 days after injection. CBD-BMP4 induced better bone formation than BMP4 did alone, CBD alone, and vehicle after the intramedullary injection into the mouse femur. -Bone-related genes and growth factors were expressed at higher levels in CBD-BMP4-treated mice than in all other groups, including BMP4-treated mice. Finally, CBD-BMP4 potentiated more bone formation than did controls, including BMP4 alone, when applied to cranial bone defects without a collagen scaffold. Conclusion: Altogether, nanocarrier-CBD enhanced the retention of BMP4 in the bone, thereby promoting augmented osteogenic responses in the absence of a scaffold. These results suggest that CBD-BMP4 may be clinically useful in facilitating bone formation

    Regulation of P450 oxidoreductase by gonadotropins in rat ovary and its effect on estrogen production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>P450 oxidoreductase (POR) catalyzes electron transfer to microsomal P450 enzymes. Its deficiency causes Antley-Bixler syndrome (ABS), and about half the patients with ABS have ambiguous genitalia and/or impaired steroidogenesis. POR mRNA expression is up-regulated when mesenchymal stem cells (MSCs) differentiate into steroidogenic cells, suggesting that the regulation of POR gene expression is important for steroidogenesis. In this context we examined the regulation of POR expression in ovarian granulosa cells by gonadotropins, and its possible role in steroidogenesis.</p> <p>Methods</p> <p>Changes in gene expression in MSCs during differentiation into steroidogenic cells were examined by DNA microarray analysis. Changes in mRNA and protein expression of POR in the rat ovary or in granulosa cells induced by gonadotropin treatment were examined by reverse transcription-polymerase chain reaction and western blotting. Effects of transient expression of wild-type or mutant (R457H or V492E) POR proteins on the production of estrone in COS-7 cells were examined in vitro. Effects of POR knockdown were also examined in estrogen producing cell-line, KGN cells.</p> <p>Results</p> <p>POR mRNA was induced in MSCs following transduction with the SF-1 retrovirus, and was further increased by cAMP treatment. Expression of POR mRNA, as well as Cyp19 mRNA, in the rat ovary were induced by equine chorionic gonadotropin and human chorionic gonadotropin. POR mRNA and protein were also induced by follicle stimulating hormone in primary cultured rat granulosa cells, and the induction pattern was similar to that for aromatase. Transient expression of POR in COS-7 cells, which expressed a constant amount of aromatase protein, greatly increased the rate of conversion of androstenedione to estrone, in a dose-dependent manner. The expression of mutant POR proteins (R457H or V492E), such as those found in ABS patients, had much less effect on aromatase activity than expression of wild-type POR proteins. Knockdown of endogenous POR protein in KGN human granulosa cells led to reduced estrone production, indicating that endogenous POR affected aromatase activity.</p> <p>Conclusion</p> <p>We demonstrated that the expression of POR, together with that of aromatase, was regulated by gonadotropins, and that its induction could up-regulate aromatase activity in the ovary, resulting in a coordinated increase in estrogen production.</p

    A study on ensuring the quality and safety of pharmaceuticals and medical devices derived from processing of autologous human induced pluripotent stem(-like) cells

    Get PDF
    As a series of endeavors to establish suitable measures for the sound development of regenerative medicine using human stem cell-based products, we studied scientific principles, concepts, and basic technical elements to ensure the quality and safety of therapeutic products derived from autologous human iPS cells or iPS cell-like cells, taking into consideration scientific and technological advances, ethics, regulatory rationale, and international trends in human stem cell-derived products. This led to the development of the Japanese official Notification No. 0907-4, “Guideline on Ensuring the Quality and Safety of Pharmaceuticals and Medical Devices Derived from the Processing of Autologous Human Induced Pluripotent Stem(-Like) Cells, ” issued by Pharmaceuticals and Food Safety Bureau, Ministry of Health, Labour and Welfare of Japan, on September 7, 2012. The present paper addresses various aspects of products derived from autologous human iPS cells (or iPS cell-like cells), in addition to similar points to consider that are described previously for autologous human stem cell-based products. Major additional points include (1) possible existence of autologous human iPS cell-like cells that are different from iPS cells in terms of specific biological features; (2) the use of autologous human iPS(-like) cells as appropriate starting materials for regenerative medicine, where necessary and significant; (3) establishment of autologous human iPS(-like) cell lines and their characterization; (4) cell banking and/or possible establishment of intermediate cell lines derived from autologous human iPS(-like) cells at appropriate stage(s) of a manufacturing process, if necessary; and (5) concerns about the presence of undifferentiated cells in the final product; such cells may cause ectopic tissue formation and/or tumorigenesis. The ultimate goal of this guidance is to provide suitable medical opportunities as soon as possible to the patients with severe diseases that are difficult to treat with conventional modalities

    Design of polymeric materials for culturing human pluripotent stem cells: progress toward feeder-free and xeno-free culturing

    Get PDF
    This review describes recent developments regarding the use of natural and synthetic polymers to support the propagation of human pluripotent stem cells (hPSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (hiPSCs) while maintaining pluripotency in feeder-free and xeno-free cultures. The development of methods for culturing these cells without using mouse embryonic fibroblasts (MEFs) as a feeder layer will enable more reproducible culture conditions and reduce the risk of xenogenic contaminants, thus increasing the potential clinical applications of differentiated hPSCs. Human or recombinant fibronectin, laminin-511, and vitronectin, which are components of the extracellular matrix (ECM), have been used instead of Matrigel for the feeder-free growth of undifferentiated hPSCs. Successful hPSC cultures have been described for the following conditions: on oligopeptide-immobilized surfaces derived from vitronectin, on microcarriers prepared from synthetic polymers, and encapsulated within three-dimensional (3D) hydrogels composed of alginate and other hydrophilic natural polymers. Recently, synthetic biomaterials that allow hPSCs to maintain pluripotency by secreting endogenous ECM components have been designed. The combination of human ECM proteins or cell adhesion molecules (e.g., oligopeptides and poly-d-lysine) and synthetic biomaterials with well-designed surfaces and/or structures (e.g., scaffolds, hydrogels, microcarriers, microcapsules, or microfibers) in the presence of a chemically defined medium containing recombinant growth factors would offer a xeno-free alternative to feeder cells for culturing hPSCs and maintaining their pluripotency
    corecore