72 research outputs found

    Adrenomedullin in peritoneal effluent expressed by peritoneal mesothelial cells

    Get PDF
    BACKGROUND: Adrenomedullin (AM) possesses vasodilative and cell-protective properties. Glycine combines with the C-terminal of AM to form mature, physiologically active AM (mAM). AM is reportedly induced by high glucose condition in vascular endothelial or smooth muscle cells; however, little is known on how AM is activated by amidation. To investigate the behavior of AM in patients undergoing peritoneal dialysis (PD), the concentrations of AM, mAM and CA125 were measured. The mAM to AM ratio (mAM/AM ratio) was also evaluated as a marker of amidation activity. METHODS: Twenty patients were recruited for this study. The effluent at the time of the peritoneal equilibration test was collected and AM, mAM and CA125 concentrations were measured. The expression of AM in peritoneal mesothelial cells (PMCs) collected from effluent was also examined with an indirect immunofluorescent method. RESULTS: Mean values of AM and mAM in effluent were 18.1 ± 1.6 and 4.1 ± 0.3 fmol/mL, respectively. In plasma, they were 42.6 ± 3.3 and 5.6 ± 0.6 fmol/mL, respectively. AM concentrations in effluent did not correlate with plasma AM level but correlated well with the dialysate-to-plasma ratio of creatinine (D/P ratio of creatinine). Moreover, in 7 of 20 cases, concentrations of the mAM and mAM/AM ratio in effluent were higher than in plasma. In effluent, AM concentration but not the mAM/AM ratio correlated with CA125 concentration. Immunocytological study revealed diffuse, cytoplasmic expression of AM in PMCs which were collected from effluent during PD. CONCLUSION: AM is expressed by PMCs and actively amidated in the abdominal cavity of patients undergoing PD

    Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study

    Full text link
    We report on the surface modification of polytetrafluoroethylene (PTFE) as an example of soft- and bio-materials that occur under plasma discharge by kinetics analysis of radical formation using in situ real-time electron spin resonance (ESR) measurements. During irradiation with hydrogen plasma, simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the C-DB density were observed in real time, where the rate of density change was accelerated during initial irradiation and then became constant over time. It is noteworthy that C-DBs were formed synergistically by irradiation with both vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR technique is useful to elucidate synergistic roles during plasma surface modification.Comment: 14 pages, 4 figure

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    回路シミュレータ上で動作するリチウムイオン電池物理モデル

    No full text

    Zeolitic interlayer microchannels of magadiite, a natural layered silicate, to boost green organic synthesis

    No full text
    We report an efficient synthesis of benzoic acid using a TiO2 photocatalytic system where magadiite, a natural layered silicate, is used as an additive. The key of the system is magadiite, which recovers benzoic acid at an unprecedentedly high purity and yield. Magadiite has attracted considerable attention in many applications, but properties of this mineral have remained mysterious for the lack of crystal structure information. We have thus revisited its structure analysis and succeeded in determining its structure using X-ray pair distribution functions
    corecore