10 research outputs found

    Task support system by displaying instructional video onto AR workspace

    Full text link
    This paper presents an instructional support system based on aug-mented reality (AR). This system helps a user to work intuitively by overlaying visual information in the same way of a navigation system. In usual AR systems, the contents to be overlaid onto real space are created with 3D Computer Graphics. In most cases, such contents are newly created according to applications. However, there are many 2D videos that show how to take apart or build elec-tric appliances and PCs, how to cook, etc. Therefore, our system employs such existing 2D videos as instructional videos. By trans-forming an instructional video to display, according to the user’s view, and by overlaying the video onto the user’s view space, the proposed system intuitively provides the user with visual guidance. In order to avoid the problem that the display of the instructional video and the user’s view may be visually confused, we add var-ious visual effects to the instructional video, such as transparency and enhancement of contours. By dividing the instructional video into sections according to the operations to be carried out in order to complete a certain task, we ensure that the user can interactively move to the next step in the instructional video after a certain op-eration is completed. Therefore, the user can carry on with the task at his/her own pace. In the usability test, users evaluated the use of the instructional video in our system through two tasks: a task involving building blocks and an origami task. As a result, we found that a user’s visibility improves when the instructional video is transformed to display according to his/her view. Further, for the evaluation of visual effects, we can classify these effects according to the task and obtain the guideline for the use of our system as an instructional support system for performing various other tasks

    The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury

    Get PDF
    Background : Acute respiratory distress syndrome, which is caused by acute lung injury, is a destructive respiratory disorder caused by a systemic inflammatory response. Persistent inflammation results in irreversible alveolar fibrosis. Because hydrogen gas possesses anti-inflammatory properties, we hypothesized that daily repeated inhalation of hydrogen gas could suppress persistent lung inflammation by inducing functional changes in macrophages, and consequently inhibit lung fibrosis during late-phase lung injury. Methods : To test this hypothesis, lung injury was induced in mice by intratracheal administration of bleomycin (1.0 mg/kg). Mice were exposed to control gas (air) or hydrogen (3.2% in air) for 6 h every day for 7 or 21 days. Respiratory physiology, tissue pathology, markers of inflammation, and macrophage phenotypes were examined. Results : Mice with bleomycin-induced lung injury that received daily hydrogen therapy for 21 days (BH group) exhibited higher static compliance (0.056 mL/cmH(2)O, 95% CI 0.047-0.064) than mice with bleomycin-induced lung injury exposed only to air (BA group; 0.042 mL/cmH(2)O, 95% CI 0.031-0.053, p = 0.02) and lower static elastance (BH 18.8 cmH(2)O/mL, [95% CI 15.4-22.2] vs. BA 26.7 cmH(2)O/mL [95% CI 19.6-33.8], p = 0.02). When the mRNA levels of pro-inflammatory cytokines were examined 7 days after bleomycin administration, interleukin (IL)-6, IL-4 and IL-13 were significantly lower in the BH group than in the BA group. There were significantly fewer M2-biased macrophages in the alveolar interstitium of the BH group than in the BA group (3.1% [95% CI 1.6-4.5%] vs. 1.1% [95% CI 0.3-1.8%], p = 0.008). Conclusions The results suggest that hydrogen inhalation inhibits the deterioration of respiratory physiological function and alveolar fibrosis in this model of lung injury

    Video mosaicing for curved documents by structure from motion

    Get PDF
    SIGGRAPH '06 : The 33rd International Conference and Exhibition on Computer Graphics and Interactive Techniques , Jul 30-Aug 3, 2006 , Boston, MA, US

    High-resolution Video Mosaicing for Documents and Photos by Estimating Camera Motion

    Get PDF
    Recently, document and photograph digitization from a paper is very important for digital archiving and personal data transmission through the internet. To realize easy and high quality digitization of documents and photographs, we propose a novel digitization method that uses a movie captured by a hand-held camera. In our method, first, 6-DOF(Degree Of Freedom) position and posture parameters of the mobile camera are estimated in each frame by tracking image features automatically. Next, re-appearing feature points in the image sequence are detected and stitched for minimizing accumulated estimation errors. Finally, all the images are merged as a high-resolution mosaic image using the optimized parameters. Experiments have successfully demonstrated the feasibility of the proposed method. Our prototype system can acquire initial estimates of extrinsic camera parameters in real-time with capturing images
    corecore