12 research outputs found

    The Catalytic Conversion of 1,2-Propandiol to Propanal on FSM-16 Molded by Wet-Treatment and Pressurization

    Get PDF
    The catalytic conversion of 1,2-propandiol to propanal is examined using FSM-16 particles (0.85-1.70 mm) molded by wet-treatment and pressurization. When FSM-16 was molded with 0.6 g of pressurization and supplied to the catalytic conversion of 1,2-propandiol at 673 K, this system resulted in a 94.8% conversion of 1,2-propandiol and 90.5% selectivity to propanal at 0.25 h on-stream, which was the maximum amount of activity. However, at 4.50 h on-stream, the activity decreased extremely to deactivation 19.9% conversion of 1,2-propandiol and 84.7% selectivity to propanal. In contrast, when FSM-16 molded with wet-treatment (0.15 g) was used for the conversion at 573 K, activity was greatly increased and stable 98.6% conversion of 1,2-propandiol and 56.2% selectivity to propanal at 0.25 h on-stream followed by 91.9% and 52.5%, respectively, at 4.50 h on-stream. The hexagonal structure of FSM-16 was suggested to have contributed to the suitable conversion of 1,2-propandiol to propanal

    Acidic Properties of Various Silica Catalysts Doped with Chromium for the Oxidative Dehydrogenation of Isobutane to Isobutene

    Get PDF
    Although previous researchers have found that FSM-16 (#16 Folded Sheet Mesoporous material) doped with chromium and related Cr-doped silica catalysts has shown great activity for the oxidative dehydrogenation of isobutane to isobutene, information on the nature of these catalysts is insufficient. For this study, three types of Cr-doped silica catalysts were prepared by applying the template ion exchange method. CrOx/FSM-16 and CrOx/SiO2 were used as references. These catalysts were used for oxidative dehydrogenation, which was then characterized via various techniques. The most active catalyst was Cr-doped silica, which did not have the hexagonal structure that is characteristic of mesoporous FSM-16. Various characterizations showed that the catalytic activity of the Cr-species, stemmed from a weak acidic nature and a redox nature that originated from the combination of silicate and a Cr cation, as opposed to the hexagonal structure and strong acidic nature of FSM-16

    Effects of Acidic Properties of FSM-16 on the Catalytic Conversion of 1,2-Propandiol in the Presence and Absence of Hydrogen

    Get PDF
    We have earlier showed how the catalytic conversion of 1,2-propandiol to propanal using FSM-16 (#16 folded sheets of mesoporous materials) when molded by wet treatment proceeded more favorably than when using FSM-16 molded by pressurization, while no comparison using other typical acidic catalysts and no examination of the acidic properties of FSM-16 was carried out. In the present study, the conversion using FSM-16 molded by wet treatment and pressurization was compared with that obtained by using typical acidic catalysts such as SiW12O40/SiO2 and MCM-41 (#41 of Mobil Composition of Matter) together with amorphous SiO2. Among these catalysts, FSM-16 molded by wet treatment showed the most suitable catalytic activity. In order to examine the effect of the molding procedure for FSM-16 on its structural and acidic properties, FSM-16 molded by both methods was examined using NH3-TPD, in situ FT-IR using NH3 as a probe molecule, and Hammett indicators together with XRD and TEM. According to Zaitsev's rule, the present conversion should afford acetone rather than propanal, which indicates that it would proceed via hydro cracking. Therefore, the conversion of 1,2-propandiol using FSM-16 was also examined in the presence and absence of hydrogen. Furthermore, hydration reactions of 1- and 2-propanol when using FMS-16 were examined. Based on the results obtained from this investigation, it was concluded that the conversion using a more acidic FSM-16 molded by wet treatment proceeded through dehydration rather than through hydro cracking

    The Oxidative Esterification of Propionaldehyde to Methyl Propionate in the Liquid-Phase Using a Heterogeneous Palladium Catalyst

    Get PDF
    The optimization of the oxidative esterification of propionaldehyde to methyl propionate using a supported palladium catalyst in methanol under heavy-metal-free and pressurized-oxygen conditions, which we recently reported in a previous paper, were carried out together with a study of the reaction route, the nature of the catalytic active sites, and the effect of the support. In our previous paper, we reported significantly improved activity for oxidative esterification using commercially available 5%Pd/Al2O3 at 1.5 MPa of O2 gas and 333 K and emphasized that the doping of 5%Pd/Al2O3 with lead was not needed for the reaction system, but we could not improve the activity that was reported when using 5%Pd/γ-Al2O3 doped with 5% Pb (a 93.2% conversion of propionaldehyde, 76.8% selectivity for methyl propionate and a 71.6% yield of methyl propionate) at 0.3 MPa of O2 gas and 353 K, as reported by another laboratory. In the present study, however, we exceeded those values and obtained a 98.3% conversion of propionaldehyde, 75.3% selectivity for methyl propionate and a 74.0% yield of methyl propionate using 5%Pd/γ-Al2O3 undoped with Pb at 1.5 MPa of O2 gas and 333 K. It should be noted that, in the preparation of the present 5%Pd/γ-Al2O3, Pd was doped onto Al2O3 that had been previously treated with aqueous NaOH. Another active alumina support,η-Al2O3, prepared from boehmite, afforded activity that was substantially lower than that of γ-Al2O3 and depended on the calcination temperature of boehmite to η-Al2O3. When using various concentrations of CH3OH in the aqueous reaction solution, the oxidative esterification proceeded through the formation of propionic acid. To determine why the Al2O3 support afforded better activity than the active carbon support, Pd/Al2O3 and Pd/C catalysts were examined by XAFS (X-ray absorption fine structure). XAFS revealed that Pd on Al2O3 shows a better redox nature than Pd on C, which resulted in activity on Pd/Al2O3 that was better than that on Pd/C

    Recyclability of water-soluble ruthenium–phosphine complex catalysts in multiphase selective hydrogenation of cinnamaldehyde using toluene and pressurized carbon dioxide

    Get PDF
    The recyclability of water-soluble ruthenium–phosphine complex catalysts was investigated in water–toluene and in water–pressurized carbon dioxide systems for selective hydrogenation of trans-cinnamaldehyde (CAL). For the first hydrogenation run, the selectivity for cinnamyl alcohol (COL) is high for both toluene and dense CO2, because of interfacial catalysis in which the reaction mainly occurs at the interface between the aqueous phase and the other toluene or dense CO2 phase. The total CAL conversion and the COL selectivity decrease on the second run, more significantly with dense CO2 than toluene. On the subsequent runs, however, less significant changes were observed. During the first run, the active metal complexes should change to much less active ones such as Ru(H)2Ln(TPPTS)m (L = COL) by accumulation of the main product of COL. This structural change may occur more easily in multiphase hydrogenation with dense CO2 than that with toluene, probably because the solubility in the dense CO2 gas phase is even smaller than that in toluene. For homogeneous reaction of COL in aqueous phase, Ru(H)2Ln(TPPTS)m catalyzes the isomerization to HCAL compared with the hydrogenation to hydrocinnamyl alcohol. With those complexes, however, the selectivity for COL is still comparable to that for HCAL for multiphase hydrogenation reactions because the hydrogenation of an ampholytic substrate of CAL occurs mainly at interface between water and toluene or dense CO2 gas phase. Interactions of CO2 molecules with CAL would also increase the reactivity of carbonyl group of the substrate

    Hydroformylation of 1-hexene using polymer-supported rhodium catalysts in supercritical carbon dioxide

    Get PDF
    Hydroformylation of 1-hexene was carried out in supercritical CO2 (scCO2) and in organic solvents (toluene and ethyl acetate) using polymer-supported rhodium catalysts, which were prepared from polystyrene bound triphenylphosphine (TPP) and dicarbonylacetylecetonato rhodium. Preparation variables such as TPP/Rh ratio, time of rhodium precursor fixation on the support and time of syngas pretreatment do not produce significant effects on the reaction. The product distribution slightly changes with CO2 pressure. The conversion increases appreciably as H2 pressure is raised in scCO2 but CO retards the reaction. The influence of H2 pressure in scCO2 is slightly different from that in toluene. Changes of the structure of rhodium complexes on the polymer during the catalyst preparation and the reaction were investigated by diffuse reflectance FT-IR. It should be noted that the catalyst is recyclable for the reaction in scCO2 and that the reaction rate and selectivity of the hydroformylation are much higher than those in the organic solvents
    corecore