45 research outputs found

    Pharmacologic characterization of TBP1901, a prodrug form of aglycone curcumin, and CRISPR-Cas9 screen for therapeutic targets of aglycone curcumin

    Get PDF
    プロドラッグ型クルクミン注射製剤の抗腫瘍効果及び治療標的の包括的な解析 --安全性の高い抗がん薬としての開発に期待--. 京都大学プレスリリース. 2022-10-21.Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin β-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In β-glucuronidase (GUSB)-proficient mice, both curcumin β-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin β-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation

    Chronic Inflammatory Demyelinating Polyneuropathy With Concurrent Membranous Nephropathy: An Anti-paranode and Podocyte Protein Antibody Study and Literature Survey

    Get PDF
    Background: Several case reports have described the concurrence of chronic inflammatory demyelinating polyneuropathy (CIDP) and membranous nephropathy (MN). The presence of autoantibodies against podocyte antigens phospholipase A2 receptor (PLA2R) and thrombospondin type 1 domain containing 7A (THSD7A) in MN suggests an autoimmune mechanism. Some CIDP patients also harbor autoantibodies against paranodal proteins such as neurofascin 155 (NF155) and contactin-1 (CNTN1). We investigated the relationship between CIDP and MN by assaying autoantibodies against paranodal and podocyte antigens in a CIDP patient with MN, and by a literature survey on the clinical features of CIDP with MN.Methods: Anti-CNTN1 and NF155 antibodies were measured by flow cytometry using HEK293 cell lines stably expressing human CNTN1 or NF155. Binding capacity of antibodies was validated by immunostaining mouse teased sciatic nerve fibers. Anti-PLA2R antibodies were measured by enzyme-linked sorbent assay and anti-THSD7A antibodies by indirect immunofluorescence assay. Clinical features between 14 CIDP with MN cases including two with anti-CNTN1 antibodies and 20 anti-CNTN1 antibody-positive CIDP cases were compared.Results: A patient whose ages was in the late 70 s complained of progressive weakness and superficial and deep sensory impairment in four extremities over 6 months. Nerve conduction studies showed prominent demyelination patterns. The patient presented with nephrotic syndrome. Renal biopsy disclosed basement membrane thickening with local subepithelial projections and glomerular deposits of IgG4, compatible with MN. Autoantibody assays revealed the presence of IgG4 and IgG1 anti-CNTN1 antibodies, but an absence of anti-NF155, anti-PLA2R, and anti-THSD7A antibodies. The patient's serum stained paranodes of teased sciatic nerves. CIDP with MN and anti-CNTN1 antibody-positive CIDP commonly showed male preponderance, relatively higher age of onset, acute to subacute onset in 35–50% of cases, distal dominant sensorimotor neuropathy, proprioceptive impairment leading to sensory ataxia, and very high cerebrospinal fluid protein levels. However, 11 of 13 CIDP patients with MN had a favorable response to mono- or combined immunotherapies whereas anti-CNTN1 antibody-positive CIDP was frequently refractory to corticosteroids and intravenous immunoglobulin administration.Conclusion: CIDP with MN and anti-CNTN1 antibody-positive CIDP show considerable overlap but are not identical. CIDP with MN is probably heterogeneous and some cases harbor anti-CNTN1 antibodies

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Study on reaction mechanism of dehydrogenation of magnesium hydride by in situ transmission electron microscopy

    Get PDF
    In situ observation on dehydrogenation of MgH2 was performed by using transmission electron microscope (TEM). The dehydrogenation of MgH2 with 1 mol % Nb2O5 and formation of nanosized Mg particles were observed at 150℃. Nb2O5 was not confirmed in diffraction patterns and TEM images probably due to wide dispersion. On MgH2 with 10 mol % Nb2O5, the high resolution TEM could recognize the dehydrogenation at the interface between MgH2 and Nb2O5, proceeding with increasing temperature. This suggests that hydrogen atoms could diffuse from MgH2 phase to the interface between Mg and Nb2O5, resulting in formation of hydrogen molecules at the interface

    A prospective, randomized, open-label trial of early versus late povidone-iodine gargling in patients with COVID-19

    No full text
    Abstract Povidone-iodine (PVP–I) is a broad-spectrum antiseptic reagent that has been used for over 50 years. The purpose of this study is to look into the effect of gargling with PVP–I gargling on virus clearance and saliva infectivity in COVID-19. A prospective, randomized, open-label trial of intervention with PVP–I was conducted at three quarantine facilities in Osaka, Japan, enrolling adolescents and adults with asymptomatic-to-mild COVID-19. Patients were randomly allocated to the early and late intervention group at a 1:1 ratio. The early group gargled with PVP–I from days 2 to day 6; the late group gargled with water first, then with PVP–I from day 5 after sampling till day 6. The primary and secondary endpoints were viral clearance for SARS-CoV-2 using RT-qPCR at days 5 and 6, respectively, and the investigational endpoint was saliva infectivity clearance on day5. We enrolled 430 participants, with 215 assigned to each group, and 139 in the early group and 140 in the late had a positive saliva RT-qPCR test on day 2. On day 5, the early group had a significantly higher RT-qPCR negative rate than that of the late group (p = 0.015), and the early had a significantly higher clearance rate of infectivity (p = 0.025). During the PVP–I intervention, one participant reported oropharyngeal discomfort. Gargling with PVP–I may hasten virus clearance and reduce viral transmission via salivary droplets and aerosols in patients with asymptomatic-to-mild COVID-19. (Clinical trial registration numbers: jRCT1051200078 and dateof registration: 24/11/2020)

    Dioxygen Reactivity of Copper(I) Complexes with Tetradentate Tripodal Ligands Having Aliphatic Nitrogen Donors: Synthesis, Structures, and Properties of Peroxo and Superoxo Complexes

    Get PDF
    Oxygenation of copper(I) with tetradentate tripodal ligands (L) comprised of a tris(aminoethyl)amine (tren) skeleton having sterically bulky substituent(s) on the terminal nitrogens has been investigated, where L = tris(N-benzylaminoethyl)amine (LH,Bn), tris(N-benzyl-N-methylaminoethyl)amine (LMe,Bn), or tris(N,N-dimethylaminoethyl)amine (LMe,Me). All the copper(I) complexes reacted with dioxygen at low temperatures to produce superoxocopper(II) and/or trans-(μ-1,2-peroxo)-dicopper(II) complexes depending on the steric bulkiness of the terminal nitrogens and the reaction conditions. The reaction of a copper(I) complex [Cu(LH,Bn)]+ at −90 °C in acetone resulted in the formation of a superoxo complex [Cu(LH,Bn)(O2)]+ as a less stable species and a peroxo complex [{Cu(LH,Bn)}2(O2)]2+ as a stable species. The structures of [Cu(LH,Bn)]ClO4 and [{Cu(LH,Bn)}2(O2)](BPh4)2·8(CH3)2CO were determined by X-ray crystallography. [{Cu(LH,Bn)}2(O2)]2+ has a trans-(μ-1,2-peroxo)-dicopper(II) core with a trigonal bipyramidal structure. The O–O bond distance is 1.450(5) Å with an intermetallic Cu···Cu separation of 4.476(2) Å. The resonance Raman spectrum of [{Cu(LH,Bn)}2(O2)]2+ measured at −90 °C in acetone-d6 showed a broad ν(O–O) band at 837–834 cm−1 (788 cm−1 for an 18O labeled sample) and two ν(Cu–O) bands at 556 and 539 cm−1, suggesting the presence of two peroxo species in solution. [Cu(LMe,Bn)]+ also produced both superoxo and trans-μ-1,2-peroxo species, [Cu(LMe,Bn)(O2)]+ and [{Cu(LMe,Bn)}2(O2)]2+. At a lower concentration of [Cu(LMe,Bn)]+ (∼0.24 mM) and higher dioxygen concentration (P(O2) = ∼1 atm), the superoxo species is predominantly formed, whereas at a higher concentration of [Cu(LMe,Bn)]+ (∼1 mM) and lower dioxygen concentration (P(O2) = ∼0.02 atm) the formation of the peroxo species is observed. The resonance Raman spectrum of [Cu(LMe,Bn)(O2)]+ (∼1 mM) in acetone-d6 at ∼−95 °C exhibited a ν(O–O) band at 1120 cm−1 (1059 cm−1 for an 18O labeled sample) and that of [{Cu(LMe,Bn)}2(O2)]2+ (∼3 mM) in acetone-d6 at ∼−90 °C showed two ν(O–O) bands at 812 and 797 cm−1 (767 and 753 cm−1 for an 18O labeled sample), respectively. A similar observation was also made for [{Cu(LMe,Me)}2(O2)]2+. Relationships between the energies of the LMCT and d–d transitions and those of the ν(O–O) and ν(Cu–O) stretching vibrations and the steric constraints in the Cu(II)–(O22−)–Cu(II) core are discussed
    corecore