26 research outputs found

    Leveraging Social Discourse to Measure Check-worthiness of Claims for Fact-checking

    Full text link
    The expansion of online social media platforms has led to a surge in online content consumption. However, this has also paved the way for disseminating false claims and misinformation. As a result, there is an escalating demand for a substantial workforce to sift through and validate such unverified claims. Currently, these claims are manually verified by fact-checkers. Still, the volume of online content often outweighs their potency, making it difficult for them to validate every single claim in a timely manner. Thus, it is critical to determine which assertions are worth fact-checking and prioritize claims that require immediate attention. Multiple factors contribute to determining whether a claim necessitates fact-checking, encompassing factors such as its factual correctness, potential impact on the public, the probability of inciting hatred, and more. Despite several efforts to address claim check-worthiness, a systematic approach to identify these factors remains an open challenge. To this end, we introduce a new task of fine-grained claim check-worthiness, which underpins all of these factors and provides probable human grounds for identifying a claim as check-worthy. We present CheckIt, a manually annotated large Twitter dataset for fine-grained claim check-worthiness. We benchmark our dataset against a unified approach, CheckMate, that jointly determines whether a claim is check-worthy and the factors that led to that conclusion. We compare our suggested system with several baseline systems. Finally, we report a thorough analysis of results and human assessment, validating the efficacy of integrating check-worthiness factors in detecting claims worth fact-checking.Comment: 28 pages, 2 figures, 8 table

    Manifold-Preserving Transformers are Effective for Short-Long Range Encoding

    Full text link
    Multi-head self-attention-based Transformers have shown promise in different learning tasks. Albeit these models exhibit significant improvement in understanding short-term and long-term contexts from sequences, encoders of Transformers and their variants fail to preserve layer-wise contextual information. Transformers usually project tokens onto sparse manifolds and fail to preserve mathematical equivalence among the token representations. In this work, we propose TransJect, an encoder model that guarantees a theoretical bound for layer-wise distance preservation between a pair of tokens. We propose a simple alternative to dot-product attention to ensure Lipschitz continuity. This allows TransJect to learn injective mappings to transform token representations to different manifolds with similar topology and preserve Euclidean distance between every pair of tokens in subsequent layers. Evaluations across multiple benchmark short- and long-sequence classification tasks show maximum improvements of 6.8% and 5.9%, respectively, over the variants of Transformers. Additionally, TransJect displays 79% better performance than Transformer on the language modeling task. We further highlight the shortcomings of multi-head self-attention from the statistical physics viewpoint. Although multi-head self-attention was incepted to learn different abstraction levels within the networks, our empirical analyses suggest that different attention heads learn randomly and unorderly. In contrast, TransJect adapts a mixture of experts for regularization; these experts are more orderly and balanced and learn different sparse representations from the input sequences. TransJect exhibits very low entropy and can be efficiently scaled to larger depths.Comment: 17 pages, 7 figures, 5 tables, Findings of the Association for Computational Linguistics: EMNLP202

    Persona-aware Generative Model for Code-mixed Language

    Full text link
    Code-mixing and script-mixing are prevalent across online social networks and multilingual societies. However, a user's preference toward code-mixing depends on the socioeconomic status, demographics of the user, and the local context, which existing generative models mostly ignore while generating code-mixed texts. In this work, we make a pioneering attempt to develop a persona-aware generative model to generate texts resembling real-life code-mixed texts of individuals. We propose a Persona-aware Generative Model for Code-mixed Generation, PARADOX, a novel Transformer-based encoder-decoder model that encodes an utterance conditioned on a user's persona and generates code-mixed texts without monolingual reference data. We propose an alignment module that re-calibrates the generated sequence to resemble real-life code-mixed texts. PARADOX generates code-mixed texts that are semantically more meaningful and linguistically more valid. To evaluate the personification capabilities of PARADOX, we propose four new metrics -- CM BLEU, CM Rouge-1, CM Rouge-L and CM KS. On average, PARADOX achieves 1.6 points better CM BLEU, 47% better perplexity and 32% better semantic coherence than the non-persona-based counterparts.Comment: 4 tables, 4 figure

    Overview of the CLAIMSCAN-2023: Uncovering Truth in Social Media through Claim Detection and Identification of Claim Spans

    Full text link
    A significant increase in content creation and information exchange has been made possible by the quick development of online social media platforms, which has been very advantageous. However, these platforms have also become a haven for those who disseminate false information, propaganda, and fake news. Claims are essential in forming our perceptions of the world, but sadly, they are frequently used to trick people by those who spread false information. To address this problem, social media giants employ content moderators to filter out fake news from the actual world. However, the sheer volume of information makes it difficult to identify fake news effectively. Therefore, it has become crucial to automatically identify social media posts that make such claims, check their veracity, and differentiate between credible and false claims. In response, we presented CLAIMSCAN in the 2023 Forum for Information Retrieval Evaluation (FIRE'2023). The primary objectives centered on two crucial tasks: Task A, determining whether a social media post constitutes a claim, and Task B, precisely identifying the words or phrases within the post that form the claim. Task A received 40 registrations, demonstrating a strong interest and engagement in this timely challenge. Meanwhile, Task B attracted participation from 28 teams, highlighting its significance in the digital era of misinformation

    Explaining (Sarcastic) Utterances to Enhance Affect Understanding in Multimodal Dialogues

    Full text link
    Conversations emerge as the primary media for exchanging ideas and conceptions. From the listener's perspective, identifying various affective qualities, such as sarcasm, humour, and emotions, is paramount for comprehending the true connotation of the emitted utterance. However, one of the major hurdles faced in learning these affect dimensions is the presence of figurative language, viz. irony, metaphor, or sarcasm. We hypothesize that any detection system constituting the exhaustive and explicit presentation of the emitted utterance would improve the overall comprehension of the dialogue. To this end, we explore the task of Sarcasm Explanation in Dialogues, which aims to unfold the hidden irony behind sarcastic utterances. We propose MOSES, a deep neural network, which takes a multimodal (sarcastic) dialogue instance as an input and generates a natural language sentence as its explanation. Subsequently, we leverage the generated explanation for various natural language understanding tasks in a conversational dialogue setup, such as sarcasm detection, humour identification, and emotion recognition. Our evaluation shows that MOSES outperforms the state-of-the-art system for SED by an average of ~2% on different evaluation metrics, such as ROUGE, BLEU, and METEOR. Further, we observe that leveraging the generated explanation advances three downstream tasks for affect classification - an average improvement of ~14% F1-score in the sarcasm detection task and ~2% in the humour identification and emotion recognition task. We also perform extensive analyses to assess the quality of the results.Comment: Accepted at AAAI 2023. 11 Pages; 14 Tables; 3 Figure

    Speaker Profiling in Multiparty Conversations

    Full text link
    In conversational settings, individuals exhibit unique behaviors, rendering a one-size-fits-all approach insufficient for generating responses by dialogue agents. Although past studies have aimed to create personalized dialogue agents using speaker persona information, they have relied on the assumption that the speaker's persona is already provided. However, this assumption is not always valid, especially when it comes to chatbots utilized in industries like banking, hotel reservations, and airline bookings. This research paper aims to fill this gap by exploring the task of Speaker Profiling in Conversations (SPC). The primary objective of SPC is to produce a summary of persona characteristics for each individual speaker present in a dialogue. To accomplish this, we have divided the task into three subtasks: persona discovery, persona-type identification, and persona-value extraction. Given a dialogue, the first subtask aims to identify all utterances that contain persona information. Subsequently, the second task evaluates these utterances to identify the type of persona information they contain, while the third subtask identifies the specific persona values for each identified type. To address the task of SPC, we have curated a new dataset named SPICE, which comes with specific labels. We have evaluated various baselines on this dataset and benchmarked it with a new neural model, SPOT, which we introduce in this paper. Furthermore, we present a comprehensive analysis of SPOT, examining the limitations of individual modules both quantitatively and qualitatively.Comment: 10 pages, 3 figures, 12 table

    EROS: Entity-Driven Controlled Policy Document Summarization

    Full text link
    Privacy policy documents have a crucial role in educating individuals about the collection, usage, and protection of users' personal data by organizations. However, they are notorious for their lengthy, complex, and convoluted language especially involving privacy-related entities. Hence, they pose a significant challenge to users who attempt to comprehend organization's data usage policy. In this paper, we propose to enhance the interpretability and readability of policy documents by using controlled abstractive summarization -- we enforce the generated summaries to include critical privacy-related entities (e.g., data and medium) and organization's rationale (e.g.,target and reason) in collecting those entities. To achieve this, we develop PD-Sum, a policy-document summarization dataset with marked privacy-related entity labels. Our proposed model, EROS, identifies critical entities through a span-based entity extraction model and employs them to control the information content of the summaries using proximal policy optimization (PPO). Comparison shows encouraging improvement over various baselines. Furthermore, we furnish qualitative and human evaluations to establish the efficacy of EROS.Comment: Accepted in LREC-COLING 202
    corecore