26 research outputs found

    Characterisation of transcriptionally active and inactive chromatin domains in neurons

    Get PDF
    The tandemly organised ribosomal DNA (rDNA) repeats are transcribed by a dedicated RNA polymerase in a specialised nuclear compartment, the nucleolus. There appears to be an intimate link between the maintenance of nucleolar structure and the presence of heterochromatic chromatin domains. This is particularly evident in many large neurons, where a single nucleolus is present, which is separated from the remainder of the nucleus by a characteristic shell of heterochromatin. Using a combined fluorescence in situ hybridisation and immunocytochemistry approach, we have analysed the molecular composition of this highly organised neuronal chromatin, to investigate its functional significance. We find that clusters of inactive, methylated rDNA repeats are present inside large neuronal nucleoli, which are often attached to the shell of heterochromatic DNA. Surprisingly, the methylated DNA-binding protein MeCP2, which is abundantly present in the centromeric and perinucleolar heterochromatin, does not associate significantly with the methylated rDNA repeats, whereas histone H1 does overlap partially with these clusters. Histone H1 also defines other, centromere-associated chromatin subdomains, together with the mammalian Polycomb group factor Eed. These dat

    Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2

    Get PDF
    The anaerobic chytrid Piromyces sp. E2 lacks mitochondria, but contains hydrogen-producing organelles, the hydrogenosomes. We are interested in how the adaptation to anaerobiosis influenced enzyme compartmentalization in this organism. Random sequencing of a cDNA library from Piromyces sp. E2 resulted in the isolation of cDNAs encoding malate dehydrogenase, aconitase and acetohydroxyacid reductoisomerase. Phylogenetic analysis of the deduced amino acid sequences revealed that they are closely related to their mitochondrial homologues from aerobic eukaryotes. However, the deduced sequences lack N-terminal extensions, which function as mitochondrial leader sequences in the corresponding mitochondrial enzymes from aerobic eukaryotes. Subcellular fractionation and enzyme assays confirmed that the corresponding enzymes are located in the cytosol. As anaerobic chytrids evolved from aerobic, mitochondria-bearing ancestors, we suggest that, in the course of the adaptation from an aerobic to an anaerobic lifestyle, mitochondrial enzymes were retargeted to the cytosol with the concomitant loss of their N-terminal leader sequences

    A hydrogenosome with pyruvate formate-lyase: Anaerobic chytrid fungi use an alternative route for pyruvate catabolism

    Get PDF
    The chytrid fungi Piromyces sp. E2 and Neocallimastix sp. L2 are obligatory amitochondriate anaerobes that possess hydrogenosomes. Hydrogenosomes are highly specialized organelles engaged in anaerobic carbon metabolism; they generate molecular hydrogen and ATP. Here, we show for the first time that chytrid hydrogenosomes use pyruvate formate-lyase (PFL) and not pyruvate:ferredoxin oxidoreductase (PFO) for pyruvate catabolism, unlike all other hydrogenosomes studied to date. Chytrid PFLs are encoded by a multigene family and are abundantly expressed in Piromyces sp. E2 and Neocallimastix sp. L2. Western blotting after cellular fractionation, proteinase K protection assays and determinations of enzyme activities reveal that PFL is present in the hydrogenosomes of Piromyces sp. E2. The main route of the hydrogenosomal carbon metabolism involves PFL; the formation of equimolar amounts of formate and acetate by isolated hydrogenosomes ex

    Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein)

    Get PDF
    Several microtubule binding proteins, including CLIP-170 (cytoplasmic linker protein-170), CLIP-115, and EB1 (end-binding protein 1), have been shown to associate specifically with the ends of growing microtubules in non-neuronal cells, thereby regulating microtubule dynamics and the binding of microtubules to protein complexes, organelles, and membranes. When fused to GFP (green fluorescent protein), these proteins, which collectively are called +TIPs (plus end tracking proteins), also serve as powerful markers for visualizing microtubule growth events. Here we demonstrate that e

    Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron Cultures

    Get PDF
    MicroRNAs (miRNAs) are evolutionarily conserved non-coding RNAs of ∼22 nucleotides that regulate gene expression at the level of translation and play vital roles in hippocampal neuron development, function and plasticity. Here, we performed a systematic and in-depth analysis of miRNA expression profiles in cultured hippocampal neurons during development and after induction of neuronal activity. MiRNA profiling of primary hippocampal cultures was carried out using locked nucleic-acid-based miRNA arrays. The expression of 264 different miRNAs was tested in young neurons, at various developmental stages (stage 2-4) and in mature fully differentiated neurons (stage 5) following the induction of neuronal activity using chemical stimulation protocols. We identified 210 miRNAs in mature hippocampal neurons; the expression of most neuronal miRNAs is low at early stages of development and steadily increases during neuronal differentiation. We found a specific subset of 14 miRNAs with reduced expression at stage 3 and showed that sustained expression of these miRNAs stimulates axonal outgrowth. Expression profiling following induction of neuronal activity demonstrates that 51 miRNAs, including miR-134, miR-146, miR-181, miR-185, miR-191 and miR-200a show altered patterns of expression after NMDA receptor-dependent plasticity, and 31 miRNAs, including miR-107, miR-134, miR-470 and miR-546 were upregulated by homeostatic plasticity protocols. Our results indicate that specific miRNA expression profiles correlate with changes in neuronal development and neuronal activity. Identification and characterization of miRNA targets may further elucidate translational control mechanisms involved in hippocampal development, differentiation and activity-depended processes

    Histone gene expression in Drosophila

    Get PDF
    Contains fulltext : mmubn000001_23853958x.pdf (publisher's version ) (Open Access)Promotor : W. Hennig150 p., [2] p. pl

    Cellulaire dynamica – beweging van begin tot het eind

    No full text
    De bouwstenen van het leven zijn ons door grote recente ontwikkelingen in de biologie bekend geworden. We kennen de volledige sequentie van ons genoom en krijgen een steeds beter overzicht van de moleculen waaruit onze cellen zijn opgebouwd. De volgende vraag is hoe deze bouwstenen samenwerken om zo het leven vormen. Om deze vraag te kunnen beantwoorden moet men de dynamiek en werking van de cellulaire componenten in levende cellen zichtbaar maken. Moderne microscopische technieken maken dit mogelijk. Zo kan men de continue bewegingen van de filamenten van het celskelet en zelfs individuele moleculen nauwkeurig volgen. Deze dynamiek kan men vervolgens reconstrueren met gezuiverde componenten en hierdoor de moleculaire mechanismen die verantwoordelijk zijn voor deze continue beweging van het leven ontrafelen. Deze kennis is nodig om betere medicijnen tegen kanker, infecties en ouderdomsgerelateerde ziektes te ontwikkelen

    A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis

    No full text
    Contains fulltext : 223983.pdf (publisher's version ) (Closed access

    A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis.

    No full text
    Contains fulltext : 223983.pdf (publisher's version ) (Closed access
    corecore