107 research outputs found

    A note on the orthogonality equation with two functions

    Get PDF
    The aim of this paper is to describe the solution (f, g) of the equation f(x)|g(y) = x|y , x,y∈ D, where f, g : D → Y , X, Y are Hilbert spaces over the same field K ∈ {R,C}, D is a dense subspace of X

    An example of spectral phase transition phenomenon in a class of Jacobi matrices with periodically modulated weights

    Full text link
    We consider self-adjoint unbounded Jacobi matrices with diagonal q_n=n and weights \lambda_n=c_n n, where c_n is a 2-periodical sequence of real numbers. The parameter space is decomposed into several separate regions, where the spectrum is either purely absolutely continuous or discrete. This constitutes an example of the spectral phase transition of the first order. We study the lines where the spectral phase transition occurs, obtaining the following main result: either the interval (-\infty;1/2) or the interval (1/2;+\infty) is covered by the absolutely continuous spectrum, the remainder of the spectrum being pure point. The proof is based on finding asymptotics of generalized eigenvectors via the Birkhoff-Adams Theorem. We also consider the degenerate case, which constitutes yet another example of the spectral phase transition

    On the Two Spectra Inverse Problem for Semi-Infinite Jacobi Matrices

    Full text link
    We present results on the unique reconstruction of a semi-infinite Jacobi operator from the spectra of the operator with two different boundary conditions. This is the discrete analogue of the Borg-Marchenko theorem for Schr{\"o}dinger operators in the half-line. Furthermore, we give necessary and sufficient conditions for two real sequences to be the spectra of a Jacobi operator with different boundary conditions.Comment: In this slightly revised version we have reworded some of the theorems, and we updated two reference

    The Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case

    Full text link
    We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case.Comment: 26 pages. Changes in the presentation of some result

    An expansion for polynomials orthogonal over an analytic Jordan curve

    Full text link
    We consider polynomials that are orthogonal over an analytic Jordan curve L with respect to a positive analytic weight, and show that each such polynomial of sufficiently large degree can be expanded in a series of certain integral transforms that converges uniformly in the whole complex plane. This expansion yields, in particular and simultaneously, Szego's classical strong asymptotic formula and a new integral representation for the polynomials inside L. We further exploit such a representation to derive finer asymptotic results for weights having finitely many singularities (all of algebraic type) on a thin neighborhood of the orthogonality curve. Our results are a generalization of those previously obtained in [7] for the case of L being the unit circle.Comment: 15 pages, 1 figur

    One-sided Cauchy-Stieltjes Kernel Families

    Full text link
    This paper continues the study of a kernel family which uses the Cauchy-Stieltjes kernel in place of the celebrated exponential kernel of the exponential families theory. We extend the theory to cover generating measures with support that is unbounded on one side. We illustrate the need for such an extension by showing that cubic pseudo-variance functions correspond to free-infinitely divisible laws without the first moment. We also determine the domain of means, advancing the understanding of Cauchy-Stieltjes kernel families also for compactly supported generating measures

    The smallest eigenvalue of Hankel matrices

    Full text link
    Let H_N=(s_{n+m}),n,m\le N denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behaviour of the smallest eigenvalue lambda_N of H_N. It is proved that lambda_N has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda_N can be arbitrarily slow or arbitrarily fast. In the indeterminate case, where lambda_N is known to be bounded below by a positive constant, we prove that the limit of the n'th smallest eigenvalue of H_N for N tending to infinity tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed

    Tunneling times with covariant measurements

    Full text link
    We consider the time delay of massive, non-relativistic, one-dimensional particles due to a tunneling potential. In this setting the well-known Hartman effect asserts that often the sub-ensemble of particles going through the tunnel seems to cross the tunnel region instantaneously. An obstacle to the utilization of this effect for getting faster signals is the exponential damping by the tunnel, so there seems to be a trade-off between speedup and intensity. In this paper we prove that this trade-off is never in favor of faster signals: the probability for a signal to reach its destination before some deadline is always reduced by the tunnel, for arbitrary incoming states, arbitrary positive and compactly supported tunnel potentials, and arbitrary detectors. More specifically, we show this for several different ways to define ``the same incoming state'' and ''the same detector'' when comparing the settings with and without tunnel potential. The arrival time measurements are expressed in the time-covariant approach, but we also allow the detection to be a localization measurement at a later time.Comment: 12 pages, 2 figure

    Time ordering and counting statistics

    Full text link
    The basic quantum mechanical relation between fluctuations of transported charge and current correlators is discussed. It is found that, as a rule, the correlators are to be time-ordered in an unusual way. Instances where the difference with the conventional ordering matters are illustrated by means of a simple scattering model. We apply the results to resolve a discrepancy concerning the third cumulant of charge transport across a quantum point contact.Comment: 19 pages, 1 figure; inconsequential mistake and typos correcte

    Free motion time-of-arrival operator and probability distribution

    Get PDF
    We reappraise and clarify the contradictory statements found in the literature concerning the time-of-arrival operator introduced by Aharonov and Bohm in Phys. Rev. {\bf 122}, 1649 (1961). We use Naimark's dilation theorem to reproduce the generalized decomposition of unity (or POVM) from any self-adjoint extension of the operator, emphasizing a natural one, which arises from the analogy with the momentum operator on the half-line. General time operators are set within a unifying perspective. It is shown that they are not in general related to the time of arrival, even though they may have the same form.Comment: 10 a4 pages, no figure
    corecore