6 research outputs found

    Gold Nanoparticles Induced Size Dependent Cytotoxicity on Human Alveolar Adenocarcinoma Cells by Inhibiting the Ubiquitin Proteasome System

    Get PDF
    Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5–30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome

    Modulation of Heat Shock Protein Expression in Alveolar Adenocarcinoma Cells through Gold Nanoparticles and Cisplatin Treatment

    Get PDF
    Heat-shock proteins (HSPs) are stress-responsive molecules belonging to the family of evolutionary molecular chaperones known to be crucial in many cancer types, including human alveolar adenocarcinoma cells (A549). These proteins are highly overexpressed in cancers to support their ability to accommodate imbalances in cell signalling, DNA alterations, proteins, and energy metabolism associated with oncogenesis. The current study evaluated the effects of gold nanoparticles (AuNPs) combined with cisplatin (CDDP) on molecular chaperone HSPs in A549 cells. It was found that AuNPs:CDDP decreased the percentage of cell viability (38.5%) measured using the modified lactated dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. AuNPs:CDDP exposure caused a significant (p &lt; 0.05) increase in reactive oxygen species (ROS) generation by 1.81-fold, apoptosis induction, and a decrease in the mitochondrial membrane potential (MMP) compared to AuNPs or CDDP alone. Similarly, exposure to the AuNPs:CDDP combination had pronounced cytotoxic effects on the expression of HSPs and PI3K/AKT/mTOR, as well as apoptosis-related proteins. The results demonstrate that the combination of AuNPs with CDDP might enhance the anticancer efficacy of CDDP

    Gold Nanoparticles Induced Size Dependent Cytotoxicity on Human Alveolar Adenocarcinoma Cells by Inhibiting the Ubiquitin Proteasome System

    No full text
    Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 &gt; 10 &gt; 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p &lt; 0.001) downregulated upon treatment with 5&ndash;30 &micro;g/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome

    Synthesis and Characterisation of a Graphene Oxide-Gold Nanohybrid for Use as Test Material

    Get PDF
    This paper reports the synthesis and characterization of a graphene oxide&ndash;gold nanohybrid (GO-Au) and evaluates its suitability as a test material, e.g., in nano(eco)toxicological studies. In this study, we synthesised graphene oxide (GO) and used it as a substrate for the growth of nano-Au decorations, via the chemical reduction of gold (III) using sodium citrate. The GO-Au nanohybrid synthesis was successful, producing AuNPs (~17.09 &plusmn; 4.6 nm) that were homogenously distributed on the GO sheets. They exhibited reproducible characteristics when characterised using UV-Vis, TGA, TEM, FTIR, AFM, XPS and Raman spectroscopy. The nanohybrid also showed good stability in different environmental media and its physicochemical characteristics did not deteriorate over a period of months. The amount of Au in each of the GO-Au nanohybrid samples was highly comparable, suggesting a potential for use as chemical label. The outcome of this research represents a crucial step forward in the development of a standard protocol for the synthesis of GO-Au nanohybrids. It also paves the way towards a better understanding of the nanotoxicity of GO-Au nanohybrid in biological and environmental systems
    corecore