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Abstract: This paper reports the synthesis and characterization of a graphene oxide–gold nanohybrid
(GO-Au) and evaluates its suitability as a test material, e.g., in nano(eco)toxicological studies. In this
study, we synthesised graphene oxide (GO) and used it as a substrate for the growth of nano-Au
decorations, via the chemical reduction of gold (III) using sodium citrate. The GO-Au nanohybrid
synthesis was successful, producing AuNPs (~17.09 ± 4.6 nm) that were homogenously distributed
on the GO sheets. They exhibited reproducible characteristics when characterised using UV-Vis, TGA,
TEM, FTIR, AFM, XPS and Raman spectroscopy. The nanohybrid also showed good stability in dif-
ferent environmental media and its physicochemical characteristics did not deteriorate over a period
of months. The amount of Au in each of the GO-Au nanohybrid samples was highly comparable,
suggesting a potential for use as chemical label. The outcome of this research represents a crucial step
forward in the development of a standard protocol for the synthesis of GO-Au nanohybrids. It also
paves the way towards a better understanding of the nanotoxicity of GO-Au nanohybrid in biological
and environmental systems.

Keywords: graphene oxide; gold; nanohybrid; nanoparticles; ecotoxicology; nanotoxicity

1. Introduction

Since the advent of nanotechnology in the 1980s, our society has been transforming
remarkably, and will likely continue to do so to meet our growing and evolving needs.
Faster and powerful computers, more accurate medical devices, sunscreens, cost- and
quality-efficient water filters are some of the remarkable applications involving nanotech-
nology. From environmental pollution, to increasing energy demand, scarcity of potable
water and biomedical constraints, the quest for solutions to some of the world’s problems
has driven intense research into nanomaterials [1]. On the forefront of these applications are
carbon-based nanomaterials, such as graphene and its derivatives [graphene oxide (GO),
reduced graphene oxide (rGO)], carbon nanotubes [single and multi-walled nanotubes]
and carbon dots [2].

Graphene-based materials represent a recent addition to the nanomaterials fam-
ily and yet have already found use in many applications, for example, in electronics,
medicine, agriculture and energy, and have been incorporated in many consumer products:
drug nanocarriers, high-capacity batteries, lightweight and strong materials for automo-
tive and aerospace, biosensors, biomedical devices, water desalination, anti-corrosion
coatings, etc. [3–6].
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More recently, research work has focused on exploring multicomponent nanohybrids,
which offer the advantage of combining multiple functionalities into a single advanced
material [7–9]. Popular combinations of such hybrid materials are those involving metal or
metal oxide nanoparticles (like TiO2, ZnO, Au, CuO) and carbon nanomaterials (such as
graphene oxide, carbon nanotubes, fullerenes). For instance, both GO and silver nanoparti-
cles are known to exhibit antibacterial properties [10,11]. However, graphene oxide–silver
nanocomposites (GO-Ag) have been reported to have a superior antimicrobial capability
compared to their individual components [12,13].

Similarly, graphene oxide–gold nanohybrids (GO-Au) have been reported to demon-
strate synergistic features beyond their individual capabilities, such as increased electri-
cal conductivity, catalytic activity, higher surface area, optical and medical properties,
etc. [14,15]. These features have rapidly increased the use of this nanohybrid in various
applications, such as cancer detection, bioimaging and biosensing [16–18].

Unlike natural nanomaterials that plants and animals have adapted to, engineered
materials (especially emerging ones such as nanohybrids) pose novel threats that require
critical evaluation of their potential harm to humans and ecosystems. As with any new
discovery, there are concerns about the potential of novel nanohybrids to cause toxicity
over and above that of their individual components [19,20]. Their safety to the ecosystem
and human health is yet to be fully demonstrated since the very features that make them
so advanced may also be the source of concern to ecotoxicologists, specifically in terms of
their ability to bypass biological barriers. A number of studies have demonstrated adverse
effects to human cells [21], bacteria [22], algae [23], water fleas [24], fish [25], rodents [26]
and marine mammals [22].

Currently, there is no standardised protocol for the synthesis of GO-Au nanohybrids.
It is, therefore, unclear how, in different formulations, the two components are conjugated,
quantitatively and qualitatively, and whether performance, but also potential toxicity, may
be affected. Most of the available research work on GO-Au has focused on the applications
of the nanohybrid [16,17,27]. For assessing its safety, however, it is important that critical
physicochemical parameters of the GO-Au nanohybrid are evaluated and correlated to its
toxicity. This is to ensure the reproducibility and compatibility of the results.

Herein, the production of a graphene oxide–gold nanohybrid that will be suitable as
a test material was carefully designed and evaluated. Specifically, the aspects that were
researched include: (i) synthesis and characterization of GO and GO-Au, (ii) stability of the
nanohybrid in different environmental media (iii), quantification of Au NPs in the GO-Au
nanohybrid and (iv) evaluation of ageing effects on the nanohybrid.

2. Materials and Methods
2.1. Materials

Graphite flakes, sodium nitrate (NaNO3), sulphuric acid (H2SO4, 98% w/w), potassium
permanganate (KMNO4), hydrogen peroxide (H2O2, 30% w/w), chloroauric acid (HAuCl4),
tannic acid (C76H52O46) and trisodium citrate (Na3C6H5O7) were all purchased from Sigma
Aldrich (Dorset, UK). Each of the chemicals were used as purchased without additional
purification. Ultrapure water was used in all the experiments.

2.2. Synthesis of Graphene Oxide (GO)

GO was synthesised using a modification of the Hummer’s method [28]. In brief, 5.0 g
of graphite flakes, 3.75 g of sodium nitrate (NaNO3) and 370 mL sulphuric acid were mixed
in a 1 L twin neck round bottom flask under magnetic stirring at ambient temperature.
After 10 min, the mixture was cooled in an ice bath for another 10 min. 22.5 g of potassium
permanganate was added slowly to the mixture while stirring until it changed to a dark
green paste. The stirring continued for 72 h in a fume hood at room temperature. Then,
the mixture was diluted with 500 mL of ultrapure water and stirred continuously for 1 h
at 95 ◦C. A rapid temperature increase and violent effervescence was observed. After
the temperature was reduced to ~60 ◦C, 15 mL of hydrogen peroxide (3%) was added
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drop-wise to the mixture to reduce the potassium permanganate. The mixture was stirred
continuously overnight at room temperature. Following that, a yellow tint coloration
was observed.

The suspension was then transferred into two 50 mL tubes for ease of handling and
vigorously mixed with a vortex. The solution was centrifuged twice at 7000 rpm for 15 min
at 25 ◦C. The precipitate was then treated with 30 mL sulphuric acid, 5 mL hydrogen
peroxide and 965 mL ultrapure water to remove organic impurities and oxidant ions. The
resultant mixture was stirred with a glass rod and centrifuged again (7000 rpm). The
black residue was re-suspended with water and passed through dialysis tubing (cut-off:
14,000 kDa) in ultrapure water for 72 h. The purified GO (45 mL) was freeze-dried (Berta
1–8 LSCplus, Christ, Herlev, Denmark), stored in a sealed bottle and kept in a desiccator
until further experiments were performed.

2.3. Synthesis of Graphene Oxide-Gold Nanohybrid (GO-Au)

The GO-Au nanohybrid was synthesised using a modification of the method devel-
oped by Song et al. (2014). In brief, 60 mg of the synthesised GO was dispersed in 750 mL
of ultrapure water at room temperature under magnetic stirring for 1 h. Then, chloroauric
acid (150 mg) was added to the GO dispersion. The mixture was then stirred continuously
for 1 h, after which, a solution of sodium citrate (75 mL) was added and stirred for a further
30 min. The mixture was then heated to 80 ◦C for 1 h. The final dispersion was then diluted
with ultrapure water and centrifuged 3 times (at 7000 rpm for 15 min each time). The
supernatant was discarded and the final GO-Au nanohybrid was collected. The nanohybrid
was purified using dialysis tubing (cut-off: 14,000 kDa) for 48 h. Purified GO-Au (82 mL)
was stored in a refrigerator at 4 ◦C.

2.4. Characterization of the Nanohybrid and Its Components

The UV-vis absorbance and spectra of GO and GO-Au nanohybrid were measured by
UV-2600 Shimadzu spectrophotometer using quartz cells. The spectra for the samples were
measured from 800–200 nm. The surface charge (zeta potential) of the GO dispersion was
measured using Malvern Zetasizer. 1 mL of the sample was placed in a zeta cell and mea-
sured at room temperature. Mean Z value was obtained for three replicate measurements.
The Raman spectrum was obtained using Renishaw InVia. The samples were sandwiched
between two glass slides to reduce particle size. The green laser (532 nm edge), which has
illumination range suitable for inorganic materials, was used for the measurement.

To obtain TEM image, a single drop of the homogenised sample was deposited on
a Formvar/carbon grid. The deposit was left to dry off and then examined under a Joel
1400 Bio TEM using an 80 KV electron beam current. An AFM scanning was done by
depositing drops of samples on a glass slide and left to dry off. The slide was then mounted
on the microscope. Imaging of the samples was done in peak force tapping using multimode
8 microscope with Nanoscope 5 controller (Brucker, Durham, UK). Fourier-transform
infrared spectroscopy (FTIR) analyses was done using FT-IR spectrometer Frontier MIR
(Perkin Elmer, Beaconsfield, UK). Thermogravimetric (TGA) was performed using Perkin
Elmer’s TGA 8000 (10 ◦C/min to 1000 ◦C; synthetic air flow rate of 50 mL/min).

X-ray photoelectron spectroscopic (XPS) analysis was carried out to investigate the
internal and surface chemistry of GO and GO-Au nanohybrid using Thermo Scientific
K-Alpha XPS. To identify the functional groups and chemical state of gold, spectra of high
resolution for carbon and gold (nanohybrid) were acquired and analysed with Thermo
Avantage software (version 5.957, ThermoFisher, Basingstoke, UK).

2.5. Quantification of Au NPs in the GO-Au Nanohybrid

The concentration of Au nanoparticles in the nanohybrid was quantified by inductively
coupled plasma–mass spectrometry (ICP-MS) (Perkin Elmer NexION 300X). 100 µL of the
GO-Au nanohybrid were digested in 900 µL of HCl (concentration of 15M) overnight. An
aliquot of the digested sample was further diluted using 2% HCl to ppb levels. Afterwards,
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the sample was centrifuged at 7500 rpm for 15 min. The supernatant was characterised with
UV-vis spectrophotometer for the detection of GO. In the absence of GO, the supernatant
was analysed for AuNP on ICP-MS. Five replications of this measurement were performed.

2.6. Dispersion Stability

The dispersion stability of the GO and GO-Au (both at 100 mg L−1) in ultrapure
water, borehole water and high hardness combo media (see Supplementary Materials for
quality parameters), with and without natural organic matter (NOM) (Suwannee River
NOM; International Humic Substances Society; final NOM concentration: 20 mgL−1) was
monitored using a modification of the OECD (Organisation for Economic Co-operation
and Development) 318 guideline. The samples were kept static, and an aliquot (100 µL)
was taken from the surface of the dispersion at 0, 24 and 48 h. Care was taken during
aliquot sampling to avoid agitating the whole sample. The stabilities of the nanomate-
rials were compared in triplicate using the detection of GO at an absorbance of 230 nm,
measured using spectrophotometric analyses (microplate spectrophotometer, Spark, Tecan,
Reading, UK)). The chemical constituents of the NOM are [% w/w of dry, ash-free sample]:
water (5.69), ash (4.01), carbon (50.7), hydrogen (3.97), oxygen (41.48), nitrogen (1.27) and
sulphur (1.78).

3. Results and Discussion
3.1. Characterization of Graphene Oxide

As can be seen in Figure 1A, the final yield post-synthesis of GO exhibited a dark
brown colour, which is characteristic of GO. An aliquot of the GO was freeze-dried for
further characterization and to determine its concentration (1.0 g/L). The morphology of
the GO was evaluated using transmission electron microscopy (TEM) and atomic force
microscopy (AFM) (Figure 1B,C). Using the TEM method described by Kumar et al. [29]
for estimating the number of layers, the GO sheets were mostly single layer and exhibited
flake-like structure, as shown in Figure 1B. This is corroborated by the cross-sectional height
profile of the GO flakes thickness measured by AFM height scan (Supplementary Materials,
Figure S1). The measurement showed 1 nm thickness for most of the GO flakes. According
to recommended classification [2,5], the GO sheets fall within single to few layer GO.

UV-vis spectroscopy was performed to examine the extent of oxidation of the GO
sheets. The absorption spectra can be used as a mechanism of identifying GO sheets. As
shown in Figure 1D, the UV-vis spectrum of the GO sample shows a sharp maximum
peak around 230 nm which indicates π→π* transitions of C=C bonds. The spectrum also
showed a weaker peak (shoulder) at around 300 nm which indicates n→π* transitions of
C=O bonds. This result confirms that the prepared sample contains GO, and is consistent
with the UV-vis spectra described by others [30–32].

As expected, the mean zeta potential values of the GO samples was −56.4 ± 2.4 mV
(pH = 7.9), suggesting a negative charge and a good stability [33]. The influence of pH
on zeta potential (measure of surface charge) can have implications in environmental fate.
The weak forces that bind nanoparticles together when they agglomerate can be altered by
changes in pH [34]. In toxicity exposures where pH is expected to be maintained within
certain range, a moderately stable suspension of particles provides some confidence on a
low likelihood of agglomeration occurring in low ionic potential media.

In addition, Raman spectroscopy, a non-destructive method, was used to obtain
structural information on the carbon-based nanomaterials as suggested by others [35]. It is
used to determine the stacking order, defects and number of layers of graphene [36,37]. GO
normally has two peaks: the D peak falls within the 1300–1400 cm−1 range, while the G
peak falls within the 1500–1600 cm−1 range. The D band indicates a defect region and the
G band indicates a graphitic region [31]. For the GO described here, as shown in Figure 1E,
the D peak was observed at 1343 cm−1 and the G peak appeared at 1586 cm−1. This further
confirms the presence of GO in the synthesised sample. Additionally, the ID/IG ratio of
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0.84 was recorded, indicating high level of defects, showing that this GO has undergone an
oxidation process and intense exfoliation.
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Figure 1. Characterization of graphene oxide (GO) prepared using the modified Hummer’s method.
(A) Purified GO stock dispersion a concentration of 2 mg/mL in ultrapure water, (B) TEM image of
GO dispersion, (C) AFM topographic image (D) UV-vis absorption spectrum, (E) Raman spectrum,
(F) FTIR pattern, (G) thermogravimetric analysis spectrum (H) high resolution C1s XPS spectrum,
(I) survey XPS spectrum.

To identify the various surface functionalities on the GO, The FTIR technique was
employed. The FTIR spectrum for our GO sample is shown in Figure 1F. The graphite oxi-
dation resulted in the formation of the following broad bands: 3212 cm−1 matching the O-H
stretching vibrations that are typical of hydroxyl and carboxyl functional groups [32,38,39];
1719 cm−1 corresponding to C=O stretching vibrations implying the presence of carbonyl
and carboxyl groups [40]; 1622 cm−1 showing the contribution of cyclic aromatic groups;
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1050 cm−1 matching the C-O stretching vibrations, which are the typical absorption bands
of ethers [37,40].

In order to assess the thermal stability and behaviour of the synthesised GO, TGA
analysis was performed, as shown in Figure 1G. The GO exhibited two decomposition
stages at approximately 190 ◦C and 550 ◦C, respectively. The initial weight loss up until
100 ◦C resulted from the evaporation of water content, while the loss from 150–200 ◦C can
be attributed to the loss of hydroxyl and acidic functional groups [41]. The final weight
loss up to 700 ◦C originated from the breakdown of carbonyl groups formed during the
process of GO oxidation [42].

The chemical make-up of the GO surface was evaluated by XPS and the results are
presented in Figure 1H,I. The XPS spectra represents the intensity of photoelectrons emitted
from the various atoms on the GO surface. The analysis of the XPS survey spectrum showed
that the surface chemistry of the GO is composed of 68.15% carbon and 31.85% oxygen.
The elevated percentage of oxygen confirms the oxidation of GO. The absence of commonly
reported impurities such as sulphur and nitrogen indicate the high level of purity of the
GO dispersion. The C1s scan shows the different carbon-oxygen groups present on the GO
surface (Table 1).

Table 1. Analysis of C1s scan by XPS showing the chemical groups in GO.

Functional Groups Binding Energy (eV) % Atomic

Aromatic carbon (-C=C-) 284.13 9.98
Aliphatic carbon (-C-C-) 284.96 35.98
Hydroxyl/epoxy (C-O) 286.93 45.68
Ester (COO) 288.67 8.35

3.2. Characterization of Graphene Oxide-Gold Nanohybrid (GO-Au)

Three different batches of the GO-Au nanohybrid (X, Y and Z) were prepared and
compared, as shown in Figure 2. The synthesis method was optimised to produce the
highest yield of GO-Au nanohybrid possible, over 80 mg (>2 mg/mL). Previous studies
have produced GO-Au nanohybrid suspensions within the range of 5–20 mL [43–46]. On
characterization, it was found that all the three batches were very similar, suggesting
reproducibility of the modified synthesis method of the GO-Au nanohybrid. It is important
to note that there are major differences between this modified synthesis protocol and
the original protocol of Song et. al. [44]. Firstly, the original protocol has been scaled-up
significantly. In the work presented here, 60 mg of graphene oxide and 150 mg of chloroauric
acid were used as against the 4 mg of graphene oxide and 5–20 mg of chloroauric acid
of the original protocol. Scaling up or down in the synthesis of nanoparticles can induce
significant chemical changes on the final product [47], and it may not result in a product
with properties corresponding to those of the original synthesis. Furthermore, the modified
synthesis conditions may result in a product of variable consistency, particularly in the case
of a hybrid material.

Additionally, the optimised protocol presented here produced a significantly larger
yield, which cannot always be guaranteed when scaling up, but which was an essential
requirement for a material that would be recommended for toxicological studies, where
significant quantities are necessary to allow for testing a range of concentrations and
carrying out replicate tests. The final yield of the GO-Au nanohybrid from our work was
over 80 mg. Although the yield from the original protocol was not reported, judging by
the volume of the reagents used, it is likely to have been less than 4 mg. It is generally
recognised that scaling up of nanoparticle synthesis does not automatically translate to high
yield of good quality products [48] and addressing this limitation was central to our study.
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Lastly, a crucial element in the optimised protocol is the introduction of purification at
the end of the synthesis to remove impurities, such as by-products generated during the
synthesis process. These impurities may influence the behaviour, bioavailability and toxicity
of a nanomaterial [49]. Since the focus of our synthesis is for (eco)toxicological studies, it is
important to rid the GO-Au nanohybrid of any impurities. The original protocol, however,
was designed for a different application that did not require purification.

The UV-vis spectra of the nanohybrid (Figure 2A) indicated the presence of AuNPs
on the GO sheets. Typically, the surface plasmon resonance for AuNPs is seen as a peak at
around 520–570 nm. As shown in Figure 2B, the integrity of the graphene sheets was not
affected by the AuNPs conjugation, as made evident by the presence of D and G peaks in
the Raman spectra of the nanohybrid. Notably, there was a small increase of the ID/IG ratio
calculated for the GO-Au nanohybrid from 0.84 to 0.89 following the functionalization of Au
NPs onto the GO surface. This suggests that defects were introduced onto the GO surface
as a result of the attachment of the AuNPs. This is very similar to what Song et al. [44]
reported when pure GO sheets were conjugated with Au NPs and showed that the ID/IG
ratio increased from 0.77 to 0.82 after conjugation. The thermal stability analyses of the GO-
Au nanohybrid revealed that the three samples behaved similarly, as shown in Figure 2C.
Approximately 20% of original weight was lost at around 200 ◦C, which corresponds to
the evaporation of moisture and hydroxyl or acidic moieties, while another 10–20% of
weight was lost around 400 ◦C, which may be attributed to the decomposition of carbonyl
functional groups [50]. The thermal stability of the nanohybrids thus reflects the gradual
decomposition of its GO component, and correlates well with the TGA results of the pure
GO described earlier, with small deviations likely due to the presence of AuNPs.

As shown in the TEM images of the nanohybrids (Figure 2D–F), both GO and AuNPs
can be visually observed on the images, confirming the functionalization of AuNPs onto
the surface of the GO sheets. In addition, the average size of the AuNPs was found to be
around 17.09 ± 4.6 nm from the TEM analysis. The even and planar shape of the GO sheets
provided a suitably high surface area for the attachment of the AuNPs. Bonding of AuNPs
to GO surfaces occurs via noncovalent bonds such as hydrogen bonds and electrostatic
interactions [51]. As can be seen in Figure 2D–F, AuNPs show limited tendency to aggregate
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in all the nanohybrid batches. This is not unexpected, as the likelihood of aggregation
increases as the quantity of the starting HAuCl4 is increased [44].

XPS was employed to determine the chemical composition of the GO-Au nanohybrid.
The C1s scan and survey spectrum results are presented in Figures S3 and S4. The GO-Au
nanohybrid showed 67.15% of carbon, 29.83% of oxygen and 3.02% of gold (Table 2). Similar
to the GO alone, the high oxygen content in the GO-Au nanohybrid is due to oxidation,
and the absence of any further features in the spectra confirms purity of the nanohybrid.
Deconvolution of the high resolution C1s spectrum, as highlighted in Table 1, revealed the
percentage content of the respective functional groups on the GO-Au nanohybrid.

Table 2. Analysis of C1s scan showing the chemical groups in GO-Au.

Functional Groups Binding Energy (eV) % Atomic

Aromatic carbon (-C=C-) 288.93 7.37
Aliphatic carbon (-C-C-) 285.03 35.04
Hydroxyl/epoxy (C-O) 287.09 45.37
Ester (COO) 284.12 9.92
π→π* transition in aromatic 290.67 2.3

In addition, FTIR analysis of the GO-Au nanohybrid showed to be similar to that of
GO alone, as shown in Figure S2. The observed signals between 3200–3700 cm−1 match
those of hydroxyl groups and carboxyl acids while the absorptions at 1720 cm−1 are due to
carbonyl groups. The cyclic aromatic groups and the ethers can be identified by the signals
at 1622 and 1030 cm−1, respectively.

3.3. Evaluation of Nanohybrid Ageing

The effect of ageing on the quality of the GO-Au nanohybrid was assessed using two
nanohybrids produced 4 months apart. Aged GO-Au was produced in July 2021, while
pristine GO-Au was produced in November 2021 (Figure 3A,B). Both nanohybrids were
stored for a month in darkness at a temperature of 4 ◦C.

Figure 3C presents the UV-Vis of the pristine and aged nanohybrids, highlighting
that both nanohybrids show a maximum peak at around 230 nm, which is characteristic
of GO. In addition, both nanohybrids include AuNPs, as indicated by the plasmon band
seen around 520 nm, which is distinctive of AuNPs. Apart from the slight difference in
absorbance, which is due to the difference in sample concentration, the two nanohybrids
appear identical. This suggests that there has been no significant effect of ageing on
the samples.

In order to investigate any visual or morphological changes between the pristine and
the aged nanohybrids, samples were examined under TEM. As shown in Figure 3D,E, the
TEM images confirm that the successful conjugation of the AuNPs was not affected by
ageing as well as the presence of single layered GO. In addition, the size distribution of the
AuNP is still similar in both aged and pristine nanohybrids.

The stability of the synthesised GO-Au nanohybrid could be due to the mild conditions
of the synthesis, which involved only moderate temperature (80 ◦C). This indicates that
the sp2 hybridization of graphene-based materials is stable at moderate temperatures
(≤120 ◦C), which is in agreement with other literature [52,53]. Graphene oxide, however,
becomes generally unstable at high temperatures, above 200 ◦C [54].

The toxicity and reactivity of nanomaterials can be sensitive to ageing and chemical
transformations. Depending on the chemical constituent of the media, ageing can influence
nanomaterials both structurally and compositionally and, in turn, their interaction with
other molecules in the media as well as bio-uptake. The lack of evidence of ageing in the
GO-Au nanohybrid adds to the weight of evidence that the proposed synthesis protocol
produces a nanohybrid that is suitable for toxicity testing and will remain stable even for
longer term exposures, which are not uncommon in ecotoxicity testing.



Nanomaterials 2023, 13, 33 9 of 16Nanomaterials 2022, 12, 33  10  of  18 
 

 

 

Figure  3. Characterization of pristine and aged  (by 4 months) GO‐Au nanohybrid.  (A) Stock of 

aged nanohybrid (GO‐AU XY), (B) Stock of pristine nanohybrid (GO‐AU XY) (C) UV‐Vis spectra of 

the two nanohybrids, (D) TEM image of GO‐AU Aged (E) TEM image of GO‐AU Pristine. 

3.4. Quantification of AuNP on GO‐Au Nanohybrid 

The use of ICP‐MS has benefits beyond just characterization of nanoparticles; it is a 

useful technique for the quantification and detection of nanoparticles in biological assays 

[55]. Specifically, the accuracy of using ICP‐MS to determine AuNP has been well estab‐

lished [56–58]. Investigating quantitatively the presence of AuNP in a sample is crucial to 

understanding their environmental and biological effects [56,59]. 

Gold standard solutions were used to generate a range of gold concentrations (0.01–

1.0 mg/L) for calibrating the ICP‐MS instrument. 

The concentration of Au in each of the three batches of the GO‐Au nanohybrid was 

measured using the ICP‐MS. The average concentration of Au as measured in each of the 

X, Y and Z replicates was 0.128 ± 0.005, 0.144 ± 0.003 and 0.128 ± 0.01 mg/L, respectively, 

which  corresponds  to  an  average  of  1300 mg/L  of Au  in  the  neat  suspension  of  the 

GO‐Au nanohybrid (Table S3). 

The similarity in the results demonstrates the reproducibility and reliability of our 

optimised protocol for the synthesis of the GO‐Au nanohybrid. Knowing the concentra‐

tion of AuNP will allow a better understanding of the toxicity of GO‐Au nanohybrids in 

environmental media [60]. In addition, AuNPs can be used as chemical labels to deter‐

mine the fate and transport of GO‐Au in biological or environmental systems [61]. This is 

particularly relevant  for GO, as  its compositional  tracking against  the carbon dominated 

Figure 3. Characterization of pristine and aged (by 4 months) GO-Au nanohybrid. (A) Stock of aged
nanohybrid (GO-AU XY), (B) Stock of pristine nanohybrid (GO-AU XY) (C) UV-Vis spectra of the
two nanohybrids, (D) TEM image of GO-AU Aged (E) TEM image of GO-AU Pristine.

3.4. Quantification of AuNP on GO-Au Nanohybrid

The use of ICP-MS has benefits beyond just characterization of nanoparticles; it
is a useful technique for the quantification and detection of nanoparticles in biological
assays [55]. Specifically, the accuracy of using ICP-MS to determine AuNP has been well
established [56–58]. Investigating quantitatively the presence of AuNP in a sample is crucial
to understanding their environmental and biological effects [56,59].

Gold standard solutions were used to generate a range of gold concentrations (0.01–1.0 mg/L)
for calibrating the ICP-MS instrument.

The concentration of Au in each of the three batches of the GO-Au nanohybrid was
measured using the ICP-MS. The average concentration of Au as measured in each of the X,
Y and Z replicates was 0.128 ± 0.005, 0.144 ± 0.003 and 0.128 ± 0.01 mg/L, respectively,
which corresponds to an average of 1300 mg/L of Au in the neat suspension of the GO-Au
nanohybrid (Table S3).

The similarity in the results demonstrates the reproducibility and reliability of our
optimised protocol for the synthesis of the GO-Au nanohybrid. Knowing the concentration
of AuNP will allow a better understanding of the toxicity of GO-Au nanohybrids in environ-
mental media [60]. In addition, AuNPs can be used as chemical labels to determine the fate
and transport of GO-Au in biological or environmental systems [61]. This is particularly
relevant for GO, as its compositional tracking against the carbon dominated background of
environmental matrices is especially challenging. Instead, GO can be traced through this
compositionally stable nanohybrid, involving measurement of Au concentration by, for
example, ICP-MS, as a proxy for the presence of the GO-Au nanohybrid.
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3.5. Assessment of the Impact of NOM on Dispersion Stability of the GO-Au

Evaluation of the stability of nanomaterial dispersions is one of the properties that
have been identified as fundamental in understanding their transport and fate in the
environment [55,59], as it may influence their cellular and environmental uptake and
transportation. In addition, the stability of nanomaterial dispersions is crucial to their
holistic ecotoxicological assessment [62]. It is, therefore, essential that this evaluation is
done in media that truly represent the likely environmental conditions for the ecotoxicity
indicator species under investigation.

Taking a further step towards demonstrating the relevance of the studied nanohybrid
as a model material in ecotoxicity research, the stability of GO and GO-Au was evalu-
ated in three media: ultrapure water (control), a natural borehole water (BHW) and a
synthetic high hardness combo (HHC) medium (Figures 4–6). While BHW is widely used
in ecotoxicological studies for culturing many freshwater and marine organisms such as
fish, daphnia, clams, etc., HHC as an artificial medium has also been approved for use in
culturing and testing model organisms in order to reduce variability in ecotoxicological
testing results [63]. The use of both natural (BHW) and synthetic (HHC) media for toxicity
testing is recommended by the US EPA, OECD and ISO [64–66].
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The stability of GO and GO-Au in the studied media will be influenced by environmen-
tal variables such as natural organic matter (NOM), pH and the concentrations of cations
and anions [32]. NOM tends to bind with particulate matter through hydrogen bonds,
steric repulsive forces and Lewis acid-base interactions, thereby increasing the stability and
subsequent bioavailability of suspended particles to aquatic organisms [67].

In ultrapure water, both the GO and GO-Au nanohybrid demonstrated high stability
for 48 h, as shown by the absence of reduction in absorbance at 230 nm (Figure 4). This could
be explained by the elevated surface charge of the nanomaterials (ζGO = −56.4 ± 2.4 mV
and ζGO-Au = −47.4 ± 2.5 mV) as the dispersion stability of suspended particles depends
mainly on the repulsive forces due to surface charge [68,69].

However, in the borehole and HH Combo media, the absorbance of GO and GO-Au
dispersion after 48 h declined to less than 20% of the initial absorbance, except for the GO
in the HH Combo media, which decreased to nearly 80%, as shown in Figures 5 and 6.
The surface charges measurements also significantly decreased to ζGO = −23.6 ± 0.9 mV and
ζGO-Au =−18.3± 0.6 mV for borehole, and ζGO =−34.2± 0.8 mV and ζGO-Au = −22.4 ± 1.4 mV
for HH Combo. The decrease of the dispersion stability could be because of the increase of
ionic strength of the medium and the adsorption of protons and cations (such as Mg2+, Na+)
from the media onto the GO and GO-Au surfaces [70]. This facilitated aggregation and floc-
culation of the suspended particles that could also be visually observed (Figures 5 and 6).

The colloidal stability of the two GO materials in the presence of NOM was observed to
be better than in its absence. After 24 h in borehole media, the GO and GO-Au nanohybrid
maintained approximately 50% and 80% of their initial absorbance respectively. The values
increased to 60–80% in the HH Combo media for the same duration. The concentration
of the NOM at 20 mg/mL as recommended by OECD was sufficient to make the GO-
Au nanohybrid stable in the test media. This emphasises the role of NOM in stabilising
suspensions in different environmental media, which was previously reported for other
carbon-based nanomaterials [71–73]. It could therefore be suggested that the GO-Au
nanohybrid can become bioavailable to aquatic organisms in any ecotoxicological study
with the tested media.

Media play a crucial role in the fate, behaviour and toxicity testing of nanomaterials. As
such, standard test media that contain NOM are preferred for toxicological assessments, as
they represent more realistic environmental conditions. The good stability performance of
the GO and GO-Au nanohybrid in NOM-containing borehole and HH combo underscores
the active role of NOM in bio-nano interaction. These results further demonstrate that the
proposed synthesis method can produce GO-Au nanohybrids that are stable in relevant
media and may be bioavailable to model organisms in a natural environment. This is an
important requirement for ecotoxicological research because biological responses are only
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triggered when exposure and/or uptake occurs between the GO-Au nanohybrid and the
biological target.

3.6. Overall Assessment of the GO-Au Nanohybrid as a Model Nano(eco)toxicity Material

The need to develop well-characterised standardised nanomaterials as a means to-
wards improving reproducibility in nano(eco)toxicity studies is well established e.g., [74],
and yet, the availability of such standards is limited. Notwithstanding efforts from inter-
national standardisation committees, such as OECD and ISO, and a limited number of
standard nanomaterials available by the US NIST (National Institute of Standards and
Technology), Europe’s JRC (Joint Research Centre) and a few other national standards
institute, activity around standardised nanomaterials has remained limited despite early
calls for their need [75]. Work towards standards development is often perceived as applied
research that may not generate publishable outputs. Additionally, there is confusion about
what constitutes a standard material, with terms such as “test nanomaterial”, “reference
nanomaterial” and “certified reference nanomaterial” all referring to increasing levels of
scrutiny in their production and characterisation [75]. As a result, nanomaterials standards
are limited, and when available, they are expensive to acquire and usually available only
in very small quantities. This is a concern for toxicology, but even more so for ecotoxicol-
ogy, where experimental designs (often involving in vivo trials) require large quantities
of material.

To our knowledge, there have been no previous attempts to initiate a standardisa-
tion process for anything but the simplest and most commonly used nanomaterials, and
thus, the nanohybrid presented here is a novel step in the standardisation direction. The
data presented above establish the nanohybrid’s reproducibility, provide a high level of
characterisation information, notably in ecotoxicity relevant matrices, and demonstrate the
potential to produce quantities suitable for large-scale experimentation. In addition, our
results show that ageing up to 4 months does not affect the physicochemical properties
of the hybrid. Previous work on aged nanomaterials has demonstrated clear differences
in toxicological response, when ageing affects material properties e.g., [76], and thus, it is
important that stability for a defined period of time has been established. Ecotoxicological
studies, particularly when environmentally relevant concentrations of the test material
are being assessed, may require longer term assessment, and thus, it is important to have
confidence that the test material will not age during testing.

Despite the progress achieved here, further work would be required for the nanohybrid
to go beyond a simple test material and to become a reference material. Future work
should, for example, demonstrate that the nanohybrid is clear of endotoxin, particularly for
toxicity experimentation, and that it can be synthesised in other labs following the protocol
presented here and maintain the same physicochemical properties.

4. Conclusions

In this study, we have synthesised a GO-Au nanohybrid and optimised the ratio
between GO and AuNPs in the nanohybrid produced. The nanohybrid was found to have
uniform distribution of AuNPs on the GO sheets and exhibited good stability. This is
the first study to show a reproducible standardised protocol for the synthesis of GO-Au
nanohybrids. Standardisation of practice, especially protocols, is a major focus in the
development of nano- and other advanced materials and their toxicological assessments. A
comprehensive evaluation of physical and chemical properties of the material in a realistic
media that mimics the natural environment is also an essential requirement.

This output is significant because unlike many other nanomaterials, GO-Au nanohy-
brids are not yet commercially available, and a standardised protocol for a reproducible
well-tested hybrid could support commercialisation. The high yield of the synthesis method
further enables using the nanohybrid in ecotoxicological research, which often requires a
good quantity of the same material for consistency and reproducibility testing in toxicologi-
cal studies.
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This research paves the way for critical evaluation of the nanotoxicological assessment
of GO-Au nanohybrid in biological and environmental systems, especially given that the
stability and characteristics of the GO-Au nanohybrid were not impacted by ageing for up
to 4 months.
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