14 research outputs found

    Saturn illustrated chronology: Saturn's first eleven years, April 1957 - April 1968

    Get PDF
    A history of the Saturn launch vehicles is presented for the period of April 1957 to April 1958

    An illustrated chronology of the NASA Marshall Center and MSFC programs 1960-1973

    Get PDF
    The role that NASA's Marshall Space Flight Center played in the space program during the past 13 years is highlighted with pictures and text, plus background information concerning events that were important in the center's formation

    Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia.</p> <p>Methods</p> <p>Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested <it>in vitro </it>for the killing of breast cancer cells and VEGF-stimulated VEC and <it>in vivo </it>for inhibiting the tumour growth of breast tumours in a mouse xenograft model.</p> <p>Results</p> <p>We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT.</p> <p>Conclusions</p> <p>We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers and leukaemia.</p

    Taming the rockets: From wrath to research

    No full text

    Influence of species and anatomical location on chondrocyte expansion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine articular cartilage is often used to study chondrocytes <it>in vitro</it>. It is difficult to correlate <it>in vitro </it>studies using bovine chondrocytes with <it>in vivo </it>studies using other species such as rabbits and sheep. The aim of this investigation was to study the effect of species, anatomical location and exogenous growth factors on chondrocyte proliferation <it>in vitro</it>.</p> <p>Methods</p> <p>Equine (EQ), bovine (BO) and ovine (OV) articular chondrocytes from metacarpophalangeal (fetlock (F)), shoulder (S) and knee (K) joints were cultured in tissue culture flasks. Growth factors (rh-FGFb: 10 ng/ml; rh-TGFβ: 5 ng/ml) were added to the cultures at days 2 and 4. On day 6, cells were counted and flow cytometry analysis was performed to determine cell size and granularity. A three factor ANOVA with paired Tukey's correction was used for statistical analysis.</p> <p>Results</p> <p>After 6 days in culture, cell numbers had increased in control groups of EQ-F, OV-S, OV-F and BO-F chondrocytes. The addition of rh-FGFb led to the highest increase in cell numbers in the BO-F, followed by EQ-F and OV-S chondrocytes. The addition of rh-TGFβ increased cell numbers in EQ-S and EQ-F chondrocytes, but showed nearly no effect on EQ-K, OV-K, OV-S, OV-F and BO-F chondrocytes. There was an overall difference with the addition of growth factors between the different species and joints.</p> <p>Conclusion</p> <p>Different proliferation profiles of chondrocytes from the various joints were found. Therefore, we recommend performing <it>in vitro </it>studies using the species and site where subsequent <it>in vivo </it>studies are planned.</p
    corecore