28 research outputs found

    A Kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury

    Get PDF
    © 2020, The Author(s). Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI

    The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells

    No full text
    The RET kinase has emerged as a promising target for the therapy of medullary thyroid cancers (MTC) and of a subset of papillary thyroid cancers. NVP-AST487, a N,N'-diphenyl urea with an IC(50) of 0.88 mumol/L on RET kinase, inhibited RET autophosphorylation and activation of downstream effectors, and potently inhibited the growth of human thyroid cancer cell lines with activating mutations of RET but not of lines without RET mutations. NVP-AST487 induced a dose-dependent growth inhibition of xenografts of NIH3T3 cells expressing oncogenic RET, and of the MTC cell line TT in nude mice. MTCs secrete calcitonin, a useful indicator of tumor burden. Human plasma calcitonin levels derived from the TT cell xenografts were inhibited shortly after treatment, when tumor volume was still unchanged, indicating that the effects of RET kinase inhibition on calcitonin secretion were temporally dissociated from its tumor-inhibitory properties. Accordingly, NVP-AST487 inhibited calcitonin gene expression in vitro in TT cells, in part, through decreased gene transcription. These data point to a previously unknown physiologic role of RET signaling on calcitonin gene expression. Indeed, the RET ligands persephin and GDNF robustly stimulated calcitonin mRNA, which was blocked by pretreatment with NVP-AST487. Antagonists of RET kinase activity in patients with MTC may result in effects on plasma calcitonin that are either disproportionate or dissociated from the effects on tumor burden, because RET kinase mediates a physiologic pathway controlling calcitonin secretion. The role of traditional tumor biomarkers may need to be reassessed as targeted therapies designed against oncoproteins with key roles in pathogenesis are implemented
    corecore