12 research outputs found

    Multi-dimensional Conversation Analysis across Online Social Networks

    Full text link
    With the advance of the Internet, ordinary users have created multiple personal accounts on online social networks, and interactions among these social network users have recently been tagged with location information. In this work, we observe user interactions across two popular online social networks, Facebook and Twitter, and analyze which factors lead to retweet/like interactions for tweets/posts. In addition to the named entities, lexical errors and expressed sentiments in these data items, we also consider the impact of shared user locations on user interactions. In particular, we show that geolocations of users can greatly affect which social network post/tweet will be liked/ retweeted. We believe that the results of our analysis can help researchers to understand which social network content will have better visibility.Comment: Datasets will be anonymized and published at: http://akcora.wordpress.com/2013/12/24/pointer-for-datasets

    Risks of Friendships on Social Networks

    Full text link
    In this paper, we explore the risks of friends in social networks caused by their friendship patterns, by using real life social network data and starting from a previously defined risk model. Particularly, we observe that risks of friendships can be mined by analyzing users' attitude towards friends of friends. This allows us to give new insights into friendship and risk dynamics on social networks.Comment: 10 pages, 8 figures, 3 tables. To Appear in the 2012 IEEE International Conference on Data Mining (ICDM

    Blockchain: A Graph Primer

    Full text link
    Bitcoin and its underlying technology Blockchain have become popular in recent years. Designed to facilitate a secure distributed platform without central authorities, Blockchain is heralded as a paradigm that will be as powerful as Big Data, Cloud Computing and Machine learning. Blockchain incorporates novel ideas from various fields such as public key encryption and distributed systems. As such, a reader often comes across resources that explain the Blockchain technology from a certain perspective only, leaving the reader with more questions than before. We will offer a holistic view on Blockchain. Starting with a brief history, we will give the building blocks of Blockchain, and explain their interactions. As graph mining has become a major part its analysis, we will elaborate on graph theoretical aspects of the Blockchain technology. We also devote a section to the future of Blockchain and explain how extensions like Smart Contracts and De-centralized Autonomous Organizations will function. Without assuming any reader expertise, our aim is to provide a concise but complete description of the Blockchain technology.Comment: 16 pages, 8 figure

    Data depth and core-based trend detection on blockchain transaction networks

    Get PDF
    Blockchains are significantly easing trade finance, with billions of dollars worth of assets being transacted daily. However, analyzing these networks remains challenging due to the sheer volume and complexity of the data. We introduce a method named InnerCore that detects market manipulators within blockchain-based networks and offers a sentiment indicator for these networks. This is achieved through data depth-based core decomposition and centered motif discovery, ensuring scalability. InnerCore is a computationally efficient, unsupervised approach suitable for analyzing large temporal graphs. We demonstrate its effectiveness by analyzing and detecting three recent real-world incidents from our datasets: the catastrophic collapse of LunaTerra, the Proof-of-Stake switch of Ethereum, and the temporary peg loss of USDC–while also verifying our results against external ground truth. Our experiments show that InnerCore can match the qualified analysis accurately without human involvement, automating blockchain analysis in a scalable manner, while being more effective and efficient than baselines and state-of-the-art attributed change detection approach in dynamic graphs

    Reduction Algorithms for Persistence Diagrams of Networks: CoralTDA and PrunIT

    Full text link
    Topological data analysis (TDA) delivers invaluable and complementary information on the intrinsic properties of data inaccessible to conventional methods. However, high computational costs remain the primary roadblock hindering the successful application of TDA in real-world studies, particularly with machine learning on large complex networks. Indeed, most modern networks such as citation, blockchain, and online social networks often have hundreds of thousands of vertices, making the application of existing TDA methods infeasible. We develop two new, remarkably simple but effective algorithms to compute the exact persistence diagrams of large graphs to address this major TDA limitation. First, we prove that (k+1)(k+1)-core of a graph G\mathcal{G} suffices to compute its kthk^{th} persistence diagram, PDk(G)PD_k(\mathcal{G}). Second, we introduce a pruning algorithm for graphs to compute their persistence diagrams by removing the dominated vertices. Our experiments on large networks show that our novel approach can achieve computational gains up to 95%. The developed framework provides the first bridge between the graph theory and TDA, with applications in machine learning of large complex networks. Our implementation is available at https://github.com/cakcora/PersistentHomologyWithCoralPrunitComment: Spotlight paper at NeurIPS 202

    Graph-based Management and Mining of Blockchain Data

    No full text
    corecore