8 research outputs found

    Modeling of laser-induced plasmon effects in GNS-DLC-based material for application in X-ray source array sensors

    Get PDF
    An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated. The advantages of the proposed material and the prospects for using X-ray computed tomography in the matrix source are evaluated

    The peculiarities of localized laser heating of a tissue doped by gold nanostars

    Get PDF
    The consistent patterns for local temperature fields under laser irradiation of biological tissue doped by effectively absorbing plasmon gold nanostars are discussed. Differences in the degree of spatial localization and the kinetics of the photoinduced temperature fields under irradiation by femto-, pico- and nanosecond pulses are revealed

    Nanosecond laser-induced photomodification of gold nanostars of various sizes

    Get PDF
    Gold nanostars are one of the new types of nanoparticles with advantages such as plasmon resonance tunability and low toxicity. Therefore, gold nanostars are promising candidates for various biomedical applications including bioimaging, cell optoporation and plasmonic photothermal therapy (PTT) in NIR I, II, and III optical transparency windows of biotissues. However, the stability and possible transformation of gold nanostars under laser irradiation still remains unexplored. In this work, we studied the photomodification of gold nanostars under the 1064-nm nanosecond pulsed laser irradiation by the transmission electron microscopy and spectrophotometry. The photostability of nanostars depends on their morphology and the plasmonic properties. Specifically, for large nanostars with a plasmon resonance at 950 nm remarkable changes occur at a threshold pulse energy of 5 μJ. At this threshold, a significant part of nanostars spikes melts and most of the nanostars start to transform into gold spheres. For higher pulse energies of about 50 μJ, all stars transform into spheres. For smaller gold stars with a plasmon resonance at 680 nm, the changes are less pronounced. Up to pulse energy of 50 μJ, they retain the shape of stars and have spikes on their surface. Moreover, the complete transformation of these stars into spheres does not occur up to pulse energy of about 150 μJ. The obtained results can be important for optimization of PTT treatment with gold nanostars and nanosecond laser irradiation

    Modeling of hyperthermia induced by functionalized gold nanorods bound to Staphylococcus aureus under NIR laser radiation

    Get PDF
    In this paper, a theoretical model of the formation of a local temperature field in suspensions of microorganisms with embedded plasmonic gold nanorods under irradiation by low-intensity NIR laser light was considered. The results of numerical modeling of the optical properties of plasmon nanorods used in the experiments, and the results of multiscale modeling of the parameters of local hyperthermia with various types of distribution of the concentration of plasmon nanoparticles are presented. Found that the process of concentration of nanoparticles, functionalized with human immune globulins IgA and IgG, around the cells of microorganisms with the formation of "clouds" leads to the appearance of a microscale zone of elevated temperature. This ensures a synergistic effect of a multiplicative increase in the volume of the hyperthermia zone. The results of numerical simulation provide a justification for the experimentally observed increase in the bacterium killing ability at laser hyperthermia of the cellular environment doped with functionalized nanoparticles, without a noticeable increment in the recorded average sample temperature when irradiated with a low intensity laser beam of around 100 mW/cm2

    Thermal optics of ordered arrays of plasmon nanoparticles in context of SERS, cell optoporation, and pathogen destruction

    Get PDF
    Numerical modeling of spectral absorption and scattering properties of structures manufactured as the ordered arrays of plasmon nanoparticles is carried out in this work. The results of numerical 2D simulation of selective heating of an array of plasmon resonant gold nanodiscs irradiated by a CW NIR laser (810 or 1064 nm) are presented. Calculations fit well to experimental data received. We demonstrate the possibility to control the local amplification of a shining laser field in the space between nanodiscs, as well as plasmon resonance absorption of each individual nanodisc. The perspectives of application of such nanostructures for providing of precision dosed-up thermal effects in cells and biological tissues are discussed

    >

    No full text

    Photoemission of Plasmonic Gold Nanostars in Laser-Controlled Electron Current Devices for Technical and Biomedical Applications

    No full text
    The main goal of this work was to modify the previously developed blade-type planar structure using plasmonic gold nanostars in order to stimulate photofield emission and provide efficient laser control of the electron current. Localization and enhancement of the field at the tips of gold nanostars provided a significant increase in the tunneling electron current in the experimental sample (both electrical field and photofield emission). Irradiation at a wavelength in the vicinity of the plasmon resonance (red laser) provided a gain in the photoresponse value of up to 5 times compared to irradiation far from the resonance (green laser). The prospects for transition to regimes of structure irradiation by femtosecond laser pulses at the wavelength of surface plasmon resonance, which lead to an increase in the local optical field, are discussed. The kinetics of the energy density of photoinduced hot and thermalized electrons is estimated. The proposed laser-controlled matrix current source is promising for use in X-ray computed tomography systems
    corecore