29 research outputs found

    Histomorphological perspectives of preputial and clitoral glands of soft-furred field rat Millardia meltada

    Get PDF
    The present study was an attempt to understand the sexual dimorphism of the integumentary scent glands of soft-furred fi eld rat Millardia meltada from the perspectives of anatomy, morphology and histology with view to correlate with the sex-specifi c pheromones they produce. The scent gland of male is known as preputial gland, and female, the clitoral gland. The rats, that are agricultural pests were fi eld caught, the glands of males and females of almost identical size were dissected out, and subjected to gravimetric, morphometric and histological analyses. Both glands are yellowish-brown, pear-shaped, and dorsoventrally compressed. The mean weight, length and width of preputial glands are signifi cantly (p < 0.05) larger than that of the clitoral glands. The preputial gland is composed of sebaceous glandular lobules and apocrine glandular lobules whereas the clitoral gland is formed only of sebaceous glandular lobules. The sebaceous glandular lobules of both preputial and clitoral glands are fi lled with a wax-like material. Thus, the scent glands of the soft-furred male fi eld rats exhibit sexual dimorphism in respect histoarchitecture of the glands and the nature of the secretory material. This sexual dimorphism of the scent glands may refl ect control by male and female sex hormones impinging on specifi c roles as sex attractant pheromones

    Heteroleptic Copper(I) Complexes of "Scorpionate" Bis-pyrazolyl Carboxylate Ligand with Auxiliary Phosphine as Potential Anticancer Agents: An Insight into Cytotoxic Mode

    Get PDF
    New copper(I) complexes [CuCl(PPh3)(L)] (1: L = LA = 4-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane; (2: L = LB = 3-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane) were prepared and characterised by elemental analysis and various spectroscopic techniques such as FT-IR, NMR, UV-Vis, and ESI-MS. The molecular structures of complexes 1 and 2 were analyzed by theoretical B3LYP/DFT method. Furthermore, in vitro DNA binding studies were carried out to check the ability of complexes 1 and 2 to interact with native calf thymus DNA (CT-DNA) using absorption titration, fluorescence quenching and circular dichroism, which is indicative of more avid binding of the complex 1. Moreover, DNA mobility assay was also conducted to study the concentration-dependent cleavage pattern of pBR322 DNA by complex 1, and the role of ROS species to have a mechanistic insight on the cleavage pattern, which ascertained substantial roles by both hydrolytic and oxidative pathways. Additionally, we analyzed the potential of the interaction of complex 1 with DNA and enzyme (Topo I and II) with the aid of molecular modeling. Furthermore, cytotoxic activity of complex 1 was tested against HepG2 cancer cell lines. Thus, the potential of the complex 1 is promising though further in vivo investigations may be required before subjecting it to clinical trials

    [Ru(phen)<SUB>2</SUB>(dppz)]<SUP>2+</SUP> as an efficient optical probe for staining nuclear components

    No full text
    The 'molecular light switch' complexes [Ru(bpy)2(dppz)]2+ (1) and [Ru(phen)2(dppz)]2+ (2), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline and dppz = dipyrido[3,2-a:2',3'-c]phenazine, have been explored as probes for diagnosing and staining nuclear components. The phen complex acts as a better staining agent for nonviable cells than for viable cells and exhibits a staining efficiency in tail region of comet more specific and stronger than the already known dye Hoechst 33258

    Non-covalent DNA binding and cytotoxicity of certain mixed-ligand ruthenium(II) complexes of 2,2'-dipyridylamine and diimines

    No full text
    A series of mixed ligand ruthenium(II) complexes [Ru(Hdpa)2(diimine)](ClO4)21-5, where Hdpa is 2,2'-dipyridylamine and diimine is 1,10-phenanthroline (phen) and a modified/extended 1,10-phenanthroline such as, 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), 5-methyldipyrido[3,2-d:2',3'-f]quinoxaline (mdpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) have been isolated and characterized by analytical and spectral methods. The complex [Ru(Hdpa)2(phen)](PF6)21 has been structurally characterized and the coordination geometry around Ru(II) in it is described as distorted octahedral. 1H NMR spectral data reveal that 1-5 should have a C2 symmetry lying on the diimine plane due to the rapid flapping of the coordinated Hdpa ligands. The interaction of the complexes with calf thymus (CT) DNA has been explored by using absorption and emission spectral and viscometry and electrochemical techniques and the mode of DNA binding of the complexes has been proposed. The DNA binding affinity of the complexes decreases with decrease in number of planar aromatic rings in the co-ligand supporting the intercalation of the diimine co-ligands in between the DNA base pairs. Circular dichroic spectral studies reveal that the complexes 3-5 exhibit induced circular dichroism upon binding to CT DNA. Interestingly, upon interaction with CT DNA all the complexes show an increase in anodic current in the cyclic voltammograms suggesting that they are involved in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 5 alters the DNA superhelicity upon binding with supercoiled pBR322 DNA, which is consistent with its higher DNA binding affinity. Further, the cytotoxicities of the complexes against human cervical epidermoid carcinoma cell line (ME180) have been examined. Interestingly, 5 exhibits a cytotoxicity against ME180 higher than other complexes with potency approximately 8 times more than cisplatin for 24 h incubation but 4 times lower than cisplatin for 48 h incubation

    Ectopic pregnancy: search for biomarker in salivary proteome

    No full text
    Abstract Ectopic pregnancy (EP) is associated with high maternal morbidity and mortality. Ultrasonography is the only dependable diagnostic tool for confirming an ectopic pregnancy. In view of inadequate early detection methods, women suffer from a high-life risk due to the severity of EP. Early detection of EP using pathological/molecular markers will possibly improve clinical diagnosis and patient management. Salivary proteins contain potential biomarkers for diagnosing and detecting various physiological and/or pathological conditions. Therefore, the present investigation was designed to explore the salivary proteome with special reference to EP. Gel-based protein separation was performed on saliva, followed by identification of proteins using Liquid Chromatography-Tandem Mass Spectrometry (LC–MS/MS). Totally, 326 proteins were identified in the salivary samples, among which 101 were found to be specific for ruptured ectopic pregnancy (EPR). Reactome analysis revealed innate immune system, neutrophil degranulation, cell surface interactions at the vascular wall, and FCERI-mediated NF-kB activation as the major pathways to which the salivary proteins identified during EPR are associated. Glutathione-S-transferase omega-1 (GSTO1) is specific for EPR and has been reported as a candidate biomarker in the serum of EPR patients. Therefore, saliva would be a potential source of diagnostic non-invasive protein biomarker(s) for EP. Intensive investigation on the salivary proteins specific to EP can potentially lead to setting up of a panel of candidate biomarkers and developing a non-invasive protein-based diagnostic kit

    Induction of cell death by ternary copper(II) complexes of L-tyrosine and diimines: role of coligands on DNA binding and cleavage and anticancer activity

    No full text
    The mononuclear mixed ligand copper(II) complexes of the type [Cu(l-tyr)(diimine)](ClO4), where tyr is l-tyrosine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. In the X-ray crystal structure 3 Cu(II) possesses a distorted square pyramidal coordination geometry with the two nitrogen atoms of 5,6-dmp ligand and the amine nitrogen and carboxylate oxygen atoms of l-tyrosine located at the equatorial sites and the coordinated water molecule present in the apical position. The electronic absorption and electron paramagnetic resonance (EPR) spectral parameters reveal that the complexes retain their square-based geometries even in solution. All of the complexes display a ligand field band in the visible region (600-700 nm) in Tris-HCl/NaCl buffer (5:50 mM) at pH 7.2 and also axial EPR spectra in acetonitrile at 77 K with g &gt; g&#8869; indicating a dx2-y2 ground state. The g and A values of 2.230 and (170-180) &#215; 10-4 cm-1, respectively, conform to a square-based CuN3O coordination chromophore, which is consistent with the X-ray crystal structure of 3. The interaction of the complexes with calf thymus DNA (CT DNA) has been explored by using physical methods to propose modes of DNA binding of the complexes. Absorption (Kb) and emission spectral studies and viscosity measurements indicate that 4 interacts with DNA more strongly than all of the other complexes through partial intercalation of the extended planar ring of dpq with DNA base stack. Interestingly, complex 3 exhibits a DNA binding affinity that is higher than that of 2, which suggests the involvement of 5,6-dimethyl groups on the phen ring in hydrophobic interaction with DNA surface. In contrast with the increase in relative viscosities of DNA bound to 2-4, the viscosity of DNA bound to 1 decreases, indicating the shortening of the DNA chain length by means of the formation of kinks or bends. All complexes exhibit effective DNA (pUC19 DNA) cleavage at 100 &#956; M complex concentrations, and the order of DNA cleavage ability varies as 3 &gt; 2 &gt; 4 &gt; 1. Interestingly, 3 exhibits a DNA cleavage rate constant that is higher than that of the other complexes only at 100 &#956; M concentration, whereas 4 exhibits the highest cleavage rate constant at 80 &#181;M complex concentration. The oxidative DNA cleavage follows the order 4 &gt; 3 &gt; 2 &gt; 1. Mechanistic studies reveal that the DNA cleavage pathway involves hydroxyl radicals. Interestingly, only 4 displays efficient photonuclease activity upon irradiation with 365 nm light, which occurs through double-strand DNA breaks involving hydroxyl radicals. Furthermore, cytotoxicity studies on the nonsmall lung cancer (H-460) cell line show that the IC50 values of 2-4 are more or less equal to cisplatin for the same cell line, indicating that they have the potential to act as very effective anticancer drugs in a time-dependent manner. The study of cytological changes reveals the higher induction of apoptosis and mitotic catastrophe for 4 and 3, respectively. The alkaline single-cell gel electrophoresis (comet assay), DNA laddering, and AO/EB and Hoechst 33258 staining assays have also been employed in finding the extent of DNA damage. Flow cytometry analysis shows an increase in the percentage of cells with apoptotic morphological features in the sub-G0/G1 phase for 4, whereas it shows mitotic catastrophe for 3

    Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study

    No full text
    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management.Published versio

    Induction of Redox-Mediated Cell Death in ER-Positive and ER-Negative Breast Cancer Cells by a Copper(II)-Phenolate Complex: An In Vitro and In Silico Study

    No full text
    This research was aimed at finding the cytotoxic potential of the mixed ligand copper(II) complex [Cu(tdp)(phen)](ClO4)&mdash;where H(tdp) is the tetradentate ligand 2-[(2-(2-hydroxyethylamino)-ethylimino)methyl]phenol, and phen is 1,10-phenanthroline&mdash;to two genotypically different breast cancer cells, MCF-7 (p53+ and ER+) and MDA-MB-231 (p53- and ER-). The complex has been already shown to be cytotoxic to ME180 cervical carcinoma cells. The special focus in this study was the induction of cell death by apoptosis and necrosis, and its link with ROS. The treatment brought about nuclear fragmentation, phosphatidylserine externalization, disruption of mitochondrial trans-membrane potential, DNA damage, cell cycle arrest at sub-G1 phase, and increase of ROS generation, followed by apoptotic death of cells during early hours and a late onset of necrosis in the cells surviving the apoptosis. The efficacy of the complex against genotypically different breast cancer cells is attributed to a strong association through p53-mitochondrial redox&mdash;cell cycle junction. The ADMET properties and docking of the complex at the active site of Top1 are desirable attributes of a lead molecule for development into a therapeutic. Thus, it is shown that the copper(II)&ndash;phenolate complex[Cu(tdp)(phen)]+ offers potential to be developed into a therapeutic for breast cancers in general and ER-negative ones in particular

    Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time

    No full text
    The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future.Published versio
    corecore