8 research outputs found

    Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization

    Get PDF
    Theoretical models aimed at describing magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) NMR typically face a trade-off between the scientific rigor obtained with a strict quantum mechanical description, and the need for using realistically large spin systems, for instance using phenomenological models. Thus far, neither approach has accurately reproduced experimental results, let alone achieved the generality required to act as a reliable predictive tool. Here, we show that the use of aggressive state-space restrictions and an optimization strategy allows full-scale ab initio MAS-DNP simulations of spin systems containing thousands of nuclei. Our simulations are the first ever to achieve quantitative reproduction of experimental DNP enhancements and their MAS rate dependence for both frozen solutions and solid materials. They also revealed the importance of a previously unrecognized structural feature found in some polarizing agents that helps minimize the sensitivity losses imposed by the spin diffusion barrier

    Understanding physical chemistry of BaxSr1-xTiO3 using ReaxFF molecular dynamics simulations

    No full text
    WOS:000714387300001 PubMed ID34734600Barium strontium titanate BaxSr1-xTiO3 (BSTO) has been widely used in nano devices due to its unique ferroelectric properties and can be epitaxially grown on a SrTiO3 (STO) support, with a reduced lattice and thermal mismatch. In this work, we developed a ReaxFF reactive force field verified against quantum mechanical data to investigate the temperature and composition dependency of BSTO in non-ferroelectric/ferroelectric phases. This potential was also explicitly designed to capture the surface energetics of STO with SrO and TiO2 terminations. Our molecular dynamics simulations indicate that when the percentage of Sr increases, the phase transition temperature and the polarizations of the BaxSr1-xTiO3 system decrease monotonically. In addition, as the oxygen vacancy concentration enhances, the initial polarization and the phase transition temperature of the system drop significantly. Furthermore, our simulation results show that charge screening induced by adsorption of water molecules on TiO2 terminated surfaces leads to an increased initial polarization

    Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization

    No full text
    Theoretical models aimed at describing magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) NMR have great potential in facilitating the in silico design of DNP polarizing agents and formulations. These models must typically face a trade-off between the accuracy of a strict quantum mechanical description and the need for using realistically large spin systems, for instance, using phenomenological models. Here, we show that the use of aggressive state-space restrictions and an optimization strategy allows full-scale ab initio MAS-DNP simulations of spin systems containing thousands of nuclei. Our simulations are shown to reproduce experimental DNP enhancements quantitatively, including their MAS rate dependence, for both frozen solutions and solid materials. They also reveal the importance of a previously unrecognized structural feature found in some polarizing agents that helps minimize the sensitivity losses imposed by the spin diffusion barrier.</p

    Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization

    No full text
    Theoretical models aimed at describing magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) NMR typically face a trade-off between the scientific rigor obtained with a strict quantum mechanical description, and the need for using realistically large spin systems, for instance using phenomenological models. Thus far, neither approach has accurately reproduced experimental results, let alone achieved the generality required to act as a reliable predictive tool. Here, we show that the use of aggressive state-space restrictions and an optimization strategy allows full-scale ab initio MAS-DNP simulations of spin systems containing thousands of nuclei. Our simulations are the first ever to achieve quantitative reproduction of experimental DNP enhancements and their MAS rate dependence for both frozen solutions and solid materials. They also revealed the importance of a previously unrecognized structural feature found in some polarizing agents that helps minimize the sensitivity losses imposed by the spin diffusion barrier.This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.jpclett.0c00955. Posted with permission.</p

    Recent Advances for Improving the Accuracy, Transferability, and Efficiency of Reactive Force Fields

    No full text
    Reactive force fields provide an affordable model for simulating chemical reactions at a fraction of the cost of quantum mechanical approaches. However, classically accounting for chemical reactivity often comes at the expense of accuracy and transferability, while computational cost is still large relative to nonreactive force fields. In this Perspective, we summarize recent efforts for improving the performance of reactive force fields in these three areas with a focus on the ReaxFF theoretical model. To improve accuracy, we describe recent reformulations of charge equilibration schemes to overcome unphysical long-range charge transfer, new ReaxFF models that account for explicit electrons, and corrections for energy conservation issues of the ReaxFF model. To enhance transferability we also highlight new advances to include explicit treatment of electrons in the ReaxFF and hybrid nonreactive/reactive simulations that make it possible to model charge transfer, redox chemistry, and large systems such as reverse micelles within the framework of a reactive force field. To address the computational cost, we review recent work in extended Lagrangian schemes and matrix preconditioners for accelerating the charge equilibration method component of ReaxFF and improvements in its software performance in LAMMPS
    corecore