151 research outputs found
f-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning
When labeled training data is scarce, a promising data augmentation approach
is to generate visual features of unknown classes using their attributes. To
learn the class conditional distribution of CNN features, these models rely on
pairs of image features and class attributes. Hence, they can not make use of
the abundance of unlabeled data samples. In this paper, we tackle any-shot
learning problems i.e. zero-shot and few-shot, in a unified feature generating
framework that operates in both inductive and transductive learning settings.
We develop a conditional generative model that combines the strength of VAE and
GANs and in addition, via an unconditional discriminator, learns the marginal
feature distribution of unlabeled images. We empirically show that our model
learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA
and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e.
inductive and transductive (generalized) zero- and few-shot learning settings.
We also demonstrate that our learned features are interpretable: we visualize
them by inverting them back to the pixel space and we explain them by
generating textual arguments of why they are associated with a certain label.Comment: Accepted at CVPR 201
Gaze Embeddings for Zero-Shot Image Classification
Zero-shot image classification using auxiliary information, such as
attributes describing discriminative object properties, requires time-consuming
annotation by domain experts. We instead propose a method that relies on human
gaze as auxiliary information, exploiting that even non-expert users have a
natural ability to judge class membership. We present a data collection
paradigm that involves a discrimination task to increase the information
content obtained from gaze data. Our method extracts discriminative descriptors
from the data and learns a compatibility function between image and gaze using
three novel gaze embeddings: Gaze Histograms (GH), Gaze Features with Grid
(GFG) and Gaze Features with Sequence (GFS). We introduce two new
gaze-annotated datasets for fine-grained image classification and show that
human gaze data is indeed class discriminative, provides a competitive
alternative to expert-annotated attributes, and outperforms other baselines for
zero-shot image classification
Manipulating Attributes of Natural Scenes via Hallucination
In this study, we explore building a two-stage framework for enabling users
to directly manipulate high-level attributes of a natural scene. The key to our
approach is a deep generative network which can hallucinate images of a scene
as if they were taken at a different season (e.g. during winter), weather
condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the
scene is hallucinated with the given attributes, the corresponding look is then
transferred to the input image while preserving the semantic details intact,
giving a photo-realistic manipulation result. As the proposed framework
hallucinates what the scene will look like, it does not require any reference
style image as commonly utilized in most of the appearance or style transfer
approaches. Moreover, it allows to simultaneously manipulate a given scene
according to a diverse set of transient attributes within a single model,
eliminating the need of training multiple networks per each translation task.
Our comprehensive set of qualitative and quantitative results demonstrate the
effectiveness of our approach against the competing methods.Comment: Accepted for publication in ACM Transactions on Graphic
Generating Counterfactual Explanations with Natural Language
Natural language explanations of deep neural network decisions provide an
intuitive way for a AI agent to articulate a reasoning process. Current textual
explanations learn to discuss class discriminative features in an image.
However, it is also helpful to understand which attributes might change a
classification decision if present in an image (e.g., "This is not a Scarlet
Tanager because it does not have black wings.") We call such textual
explanations counterfactual explanations, and propose an intuitive method to
generate counterfactual explanations by inspecting which evidence in an input
is missing, but might contribute to a different classification decision if
present in the image. To demonstrate our method we consider a fine-grained
image classification task in which we take as input an image and a
counterfactual class and output text which explains why the image does not
belong to a counterfactual class. We then analyze our generated counterfactual
explanations both qualitatively and quantitatively using proposed automatic
metrics.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine
Learning (WHI 2018), Stockholm, Swede
Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly
Due to the importance of zero-shot learning, i.e. classifying images where
there is a lack of labeled training data, the number of proposed approaches has
recently increased steadily. We argue that it is time to take a step back and
to analyze the status quo of the area. The purpose of this paper is three-fold.
First, given the fact that there is no agreed upon zero-shot learning
benchmark, we first define a new benchmark by unifying both the evaluation
protocols and data splits of publicly available datasets used for this task.
This is an important contribution as published results are often not comparable
and sometimes even flawed due to, e.g. pre-training on zero-shot test classes.
Moreover, we propose a new zero-shot learning dataset, the Animals with
Attributes 2 (AWA2) dataset which we make publicly available both in terms of
image features and the images themselves. Second, we compare and analyze a
significant number of the state-of-the-art methods in depth, both in the
classic zero-shot setting but also in the more realistic generalized zero-shot
setting. Finally, we discuss in detail the limitations of the current status of
the area which can be taken as a basis for advancing it.Comment: Accepted by TPAMI in July, 2018. We introduce Proposed Split Version
2.0 (Please download it from our project webpage). arXiv admin note:
substantial text overlap with arXiv:1703.0439
Evaluation of Output Embeddings for Fine-Grained Image Classification
Image classification has advanced significantly in recent years with the
availability of large-scale image sets. However, fine-grained classification
remains a major challenge due to the annotation cost of large numbers of
fine-grained categories. This project shows that compelling classification
performance can be achieved on such categories even without labeled training
data. Given image and class embeddings, we learn a compatibility function such
that matching embeddings are assigned a higher score than mismatching ones;
zero-shot classification of an image proceeds by finding the label yielding the
highest joint compatibility score. We use state-of-the-art image features and
focus on different supervised attributes and unsupervised output embeddings
either derived from hierarchies or learned from unlabeled text corpora. We
establish a substantially improved state-of-the-art on the Animals with
Attributes and Caltech-UCSD Birds datasets. Most encouragingly, we demonstrate
that purely unsupervised output embeddings (learned from Wikipedia and improved
with fine-grained text) achieve compelling results, even outperforming the
previous supervised state-of-the-art. By combining different output embeddings,
we further improve results.Comment: @inproceedings {ARWLS15, title = {Evaluation of Output Embeddings for
Fine-Grained Image Classification}, booktitle = {IEEE Computer Vision and
Pattern Recognition}, year = {2015}, author = {Zeynep Akata and Scott Reed
and Daniel Walter and Honglak Lee and Bernt Schiele}
- …