151 research outputs found

    f-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning

    Full text link
    When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.Comment: Accepted at CVPR 201

    Gaze Embeddings for Zero-Shot Image Classification

    Get PDF
    Zero-shot image classification using auxiliary information, such as attributes describing discriminative object properties, requires time-consuming annotation by domain experts. We instead propose a method that relies on human gaze as auxiliary information, exploiting that even non-expert users have a natural ability to judge class membership. We present a data collection paradigm that involves a discrimination task to increase the information content obtained from gaze data. Our method extracts discriminative descriptors from the data and learns a compatibility function between image and gaze using three novel gaze embeddings: Gaze Histograms (GH), Gaze Features with Grid (GFG) and Gaze Features with Sequence (GFS). We introduce two new gaze-annotated datasets for fine-grained image classification and show that human gaze data is indeed class discriminative, provides a competitive alternative to expert-annotated attributes, and outperforms other baselines for zero-shot image classification

    Manipulating Attributes of Natural Scenes via Hallucination

    Full text link
    In this study, we explore building a two-stage framework for enabling users to directly manipulate high-level attributes of a natural scene. The key to our approach is a deep generative network which can hallucinate images of a scene as if they were taken at a different season (e.g. during winter), weather condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the scene is hallucinated with the given attributes, the corresponding look is then transferred to the input image while preserving the semantic details intact, giving a photo-realistic manipulation result. As the proposed framework hallucinates what the scene will look like, it does not require any reference style image as commonly utilized in most of the appearance or style transfer approaches. Moreover, it allows to simultaneously manipulate a given scene according to a diverse set of transient attributes within a single model, eliminating the need of training multiple networks per each translation task. Our comprehensive set of qualitative and quantitative results demonstrate the effectiveness of our approach against the competing methods.Comment: Accepted for publication in ACM Transactions on Graphic

    Generating Counterfactual Explanations with Natural Language

    Full text link
    Natural language explanations of deep neural network decisions provide an intuitive way for a AI agent to articulate a reasoning process. Current textual explanations learn to discuss class discriminative features in an image. However, it is also helpful to understand which attributes might change a classification decision if present in an image (e.g., "This is not a Scarlet Tanager because it does not have black wings.") We call such textual explanations counterfactual explanations, and propose an intuitive method to generate counterfactual explanations by inspecting which evidence in an input is missing, but might contribute to a different classification decision if present in the image. To demonstrate our method we consider a fine-grained image classification task in which we take as input an image and a counterfactual class and output text which explains why the image does not belong to a counterfactual class. We then analyze our generated counterfactual explanations both qualitatively and quantitatively using proposed automatic metrics.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede

    Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly

    Full text link
    Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it.Comment: Accepted by TPAMI in July, 2018. We introduce Proposed Split Version 2.0 (Please download it from our project webpage). arXiv admin note: substantial text overlap with arXiv:1703.0439

    Evaluation of Output Embeddings for Fine-Grained Image Classification

    Full text link
    Image classification has advanced significantly in recent years with the availability of large-scale image sets. However, fine-grained classification remains a major challenge due to the annotation cost of large numbers of fine-grained categories. This project shows that compelling classification performance can be achieved on such categories even without labeled training data. Given image and class embeddings, we learn a compatibility function such that matching embeddings are assigned a higher score than mismatching ones; zero-shot classification of an image proceeds by finding the label yielding the highest joint compatibility score. We use state-of-the-art image features and focus on different supervised attributes and unsupervised output embeddings either derived from hierarchies or learned from unlabeled text corpora. We establish a substantially improved state-of-the-art on the Animals with Attributes and Caltech-UCSD Birds datasets. Most encouragingly, we demonstrate that purely unsupervised output embeddings (learned from Wikipedia and improved with fine-grained text) achieve compelling results, even outperforming the previous supervised state-of-the-art. By combining different output embeddings, we further improve results.Comment: @inproceedings {ARWLS15, title = {Evaluation of Output Embeddings for Fine-Grained Image Classification}, booktitle = {IEEE Computer Vision and Pattern Recognition}, year = {2015}, author = {Zeynep Akata and Scott Reed and Daniel Walter and Honglak Lee and Bernt Schiele}
    • …
    corecore