72 research outputs found

    Determination of tritium activity and chemical forms in the exhaust gas from a large fusion test device

    Get PDF
    A water bubbler system that can distinguish chemical forms of tritium was proposed for long-term tritium monitoring of the exhaust gas of a large fusion test device. The characteristics and performance of the water bubbler system were evaluated under operational conditions and confirmed to be suitable for tritium monitoring. For the tritium measurements, the water bubbler system determined the tritium activity and distinguished the chemical forms of tritium. The tritium activity and chemical forms in the exhaust gas provided helpful information to understand the tritium behavior in the large fusion test device

    Isotope Composition and Chemical Species of Monthly Precipitation Collected at the Site of a Fusion Test Facility in Japan

    Get PDF
    The deuterium plasma experiment was started using the Large Helical Device (LHD) at the National Institute for Fusion Science (NIFS) in March 2017 to investigate high-temperature plasma physics and the hydrogen isotope effects towards the realization of fusion energy. In order to clarify any experimental impacts on precipitation, precipitation has been collected at the NIFS site since November 2013 as a means to assess the relationship between isotope composition and chemical species in precipitation containing tritium. The tritium concentration ranged from 0.10 to 0.61 Bq L−1 and was high in spring and low in summer. The stable isotope composition and the chemical species were unchanged before and after the deuterium plasma experiment. Additionally, the tritium concentration after starting the deuterium plasma experiment was within three sigma of the average tritium concentration before the deuterium plasma experiment. These results suggested that there was no impact by tritium on the environment surrounding the fusion test facility

    東濃地区における環境水中トリチウム濃度の長期観測

    Get PDF
    A deuterium plasma experiment is being planned at the Large Helical Device (LHD) at the National Institute for Fusion Sciences (NIFS). To delineate the regional background tritium concentration level before initiation of the experiment, we evaluated tritium concentrations in environmental water samples (river water, pond water, well water, tap water, and rainwater) collected at Tono area, Japan since 1982. Tritium concentrations in environmental water samples ranged widely from N.D. (below the instrumental detection limit of 0.27 Bq L−1) to a maximum of 4.39 Bq L−1. Tritium concentrations at 9 continuous monitoring locations over the 15 years ranged from N.D. to 1.36 Bq L−1. This regional background concentration range will be used to evaluate environmental assessments after the initiation of the deuterium plasma experiment in LHD

    Monthly Precipitation Collected at Hirosaki, Japan: Its Tritium Concentration and Chemical and Stable Isotope Compositions

    Get PDF
    Monthly precipitation samples were collected at Hirosaki, Aomori Prefecture from January 2018 to December 2020 to measure the ion species and stable hydrogen and oxygen isotope ratios in order to understand the regional properties. The tritium concentration ranged from 0.28 to 1.20 Bq/L, with mean values (±S.D.) of 0.52 ± 0.18, 0.67 ± 0.25 and 0.63 ± 0.21 Bq/L in 2018, 2019 and 2020, respectively. This concentration level was almost the same as for Rokkasho, Aomori Prefecture. The tritium concentration had clear seasonal variation: high in the spring and low in the summer. This trend was thought to arise from seasonal fluctuations in the atmospheric circulation. On the other hand, the pH tended to be low, and the electrical conductivity (EC) tended to be high from the winter to the spring. The ion components, which major ion species contained in sea salt, also tended to be high in the winter, and these components had a strong influence on EC. The d-excess values were high in the winter and low in the summer, and when this trend was considered from the viewpoint of the wind direction data in Hirosaki, these dust components were attributed to the northwest monsoon in the winter to the spring coming from the Asian continent

    Radiation control in LHD and radiation shielding capability of the torus hall during first campaign of deuterium experiment

    Get PDF
    The activities carried out to obtain public consent for deuterium experiments in LHD, which began in 2017, are reviewed in this paper. In addition, the upgrades and the safety management of LHD for deuterium experiments, including neutron yield measurement system, exhaust detritiation system, institutional regulation for radiation control, and other issues, are briefly presented.During the first campaign of the deuterium experiments in LHD, the shielding of gamma-ray and neutron by the concrete wall of the LHD torus hall was evaluated. Also, the confinement of radioactive isotopes in air inside the torus hall was investigated. No increase of radiation dose was measured outside the torus hall, although the high radiation dose field inside the torus hall was found during deuterium experiments. Therefore, almost all gamma-rays and neutrons were shielded by the concrete wall of the torus hall due to its sufficient thickness of 2 m. The radioactive isotopes in air as well as in other components were well confined in the torus hall. In particular, the pressure control inside the torus hall being lower than outside the torus hall effectively prevented the radioactive isotopes in air from diffusing to the unprescribed area

    Integrated radiation monitoring and interlock system for the LHD deuterium experiments

    Get PDF
    The Large Helical Device (LHD) successfully started the deuterium experiment in March 2017, in which further plasma performance improvement is envisaged to provide a firm basis for the helical reactor design. Some major upgrades of facilities have been made for safe and productive deuterium experiments. For radiation safety, the tritium removal system, the integrated radiation monitoring system, and the access control system have been newly installed. Each system has new interlock signals that will prevent any unsafe plasma operation or plant condition. Major interlock extensions have been implemented as a part of the integrated radiation monitoring system, which also has an inter-connection to the LHD central operation and control system. The radiation monitoring system RMSAFE (Radiation Monitoring System Applicable to Fusion Experiments) is already operating for monitoring γ(X)-rays in LHD. Some neutron measurements have been additionally applied for the deuterium experiments. The LHD data acquisition system LABCOM can acquire and process 24 h every day continuous data streams. Since γ(X)-ray and neutron measurements require higher availability, the sensors, controllers, data acquisition computers, network connections, and visualization servers have been designed to be duplicated or multiplexed for redundancy. The radiation monitoring displays in the LHD control room have been carefully designed to have excellent visual recognition, and to make users immediately aware of several alerts regarding the dose limits. The radiation safety web pages have been also upgraded to always show both dose rates of γ(X)-rays and neutrons in real time

    Extension of the operational regime of the LHD towards a deuterium experiment

    Get PDF
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value β\left\langle \beta \right\rangle . The high β\left\langle \beta \right\rangle regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region

    Environmental tritium around a fusion test facility

    No full text
    Deuterium plasma operations using a large fusion test device have been carried out since 2017 at the National Institute for Fusion Science. A small amount of tritium was produced by the fusion reaction, d(d, p)t. Then, a part of the tritium was released into the environment. Thus, monitoring the level of tritium in the environment around the fusion test facility is important. This is done before starting the deuterium plasma experiment. The environmental tritium concentrations indicated that they are at background levels in Japan. After starting the deuterium plasma experiment, the environmental tritium around the fusion test facility was within the range of environmental variation. This suggests that there was no impact of tritium on the environment during the first deuterium plasma experimental campaign
    corecore