1,418 research outputs found

    High-temperature Superconductivity in Layered Nitrides \beta-Lix_xMNCl (M = Ti, Zr, Hf): Insights from Density-functional Theory for Superconductors

    Full text link
    We present an ab initio analysis with density functional theory for superconductors (SCDFT) to understand the superconducting mechanism of doped layered nitrides \beta-Lix_xMNCl (M=Ti, Zr, and Hf). The current version of SCDFT is based on the Migdal-Eliashberg theory and has been shown to reproduce accurately experimental superconducting-transition temperatures Tc of a wide range of phonon-mediated superconductors. In the present case, however, our calculated Tc\leq4.3 K (M=Zr) and \leq10.5 K (M=Hf) are found to be less than a half of the experimental Tc. In addition, Tc obtained in the present calculation increases with the doping concentration x, opposite to that observed in the experiment. Our results indicate that we need to consider some elements missing in the present SCDFT based on the Migdal-Eliashberg theory.Comment: 18 pages, 13 figures, submitted to Physical Review

    Epithelioid hemangioendothelioma of the temporal artery presenting as temporal arteritis: case report and literature review

    Get PDF
    <span style="font-size: small; font-family: ArialUnicodeMS;"><span style="font-size: small; font-family: ArialUnicodeMS;"><p align="left">Hemangioendotheliomas are classified as epithelioid hemangioendothelioma</p><p align="left">(EHE), retiform hemangioendothelioma, composite hemanioendothelioma, Kaposiform hemangioendothelioma (with or without Kasabach-Merritt syndrome), and Spindle cell hemangioendothelioma. The latter two types of hemangioendotheliomas usually follow a benign course, in contrast to the other types of hemangioendotheliomas, which are considered as a low grade malignant sarcoma with unpredictable prognosis. EHE's are rare tumors, mostly described in organs particularly the lungs and liver. Though endothelial in origin, EHE's reported to originate from small sized arteries are extremely rare. We report a very rare case of EHE arising from the temporal artery showing a peculiar presentation.</p></span></span

    Minor shift in background substitutional patterns in the Drosophila saltans and willistoni lineages is insufficient to explain GC content of coding sequences

    Get PDF
    BACKGROUND: Several lines of evidence suggest that codon usage in the Drosophila saltans and D. willistoni lineages has shifted towards a less frequent use of GC-ending codons. Introns in these lineages show a parallel shift toward a lower GC content. These patterns have been alternatively ascribed to either a shift in mutational patterns or changes in the definition of preferred and unpreferred codons in these lineages. RESULTS AND DISCUSSION: To gain additional insight into this question, we quantified background substitutional patterns in the saltans/willistoni group using inactive copies of a novel, Q-like retrotransposable element. We demonstrate that the pattern of background substitutions in the saltans/willistoni lineage has shifted to a significant degree, primarily due to changes in mutational biases. These differences predict a lower equilibrium GC content in the genomes of the saltans/willistoni species compared with that in the D. melanogaster species group. The magnitude of the difference can readily account for changes in intronic GC content, but it appears insufficient to explain changes in codon usage within the saltans/willistoni lineage. CONCLUSION: We suggest that the observed changes in codon usage in the saltans/willistoni clade reflects either lineage-specific changes in the definitions of preferred and unpreferred codons, or a weaker selective pressure on codon bias in this lineage

    Amplified biochemical oscillations in cellular systems

    Full text link
    We describe a mechanism for pronounced biochemical oscillations, relevant to microscopic systems, such as the intracellular environment. This mechanism operates for reaction schemes which, when modeled using deterministic rate equations, fail to exhibit oscillations for any values of rate constants. The mechanism relies on amplification of the underlying stochasticity of reaction kinetics within a narrow window of frequencies. This amplification allows fluctuations to beat the central limit theorem, having a dominant effect even though the number of molecules in the system is relatively large. The mechanism is quantitatively studied within simple models of self-regulatory gene expression, and glycolytic oscillations.Comment: 35 pages, 6 figure

    Relationship between amino acid composition and gene expression in the mouse genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon bias is a phenomenon that refers to the differences in the frequencies of synonymous codons among different genes. In many organisms, natural selection is considered to be a cause of codon bias because codon usage in highly expressed genes is biased toward optimal codons. Methods have previously been developed to predict the expression level of genes from their nucleotide sequences, which is based on the observation that synonymous codon usage shows an overall bias toward a few codons called major codons. However, the relationship between codon bias and gene expression level, as proposed by the translation-selection model, is less evident in mammals.</p> <p>Findings</p> <p>We investigated the correlations between the expression levels of 1,182 mouse genes and amino acid composition, as well as between gene expression and codon preference. We found that a weak but significant correlation exists between gene expression levels and amino acid composition in mouse. In total, less than 10% of variation of expression levels is explained by amino acid components. We found the effect of codon preference on gene expression was weaker than the effect of amino acid composition, because no significant correlations were observed with respect to codon preference.</p> <p>Conclusion</p> <p>These results suggest that it is difficult to predict expression level from amino acid components or from codon bias in mouse.</p

    The Red Rectangle: Its Shaping Mechanism and its Source of Ultraviolet Photons

    Full text link
    The proto-planetary Red Rectangle nebula is powered by HD 44179, a spectroscopic binary (P = 318 d), in which a luminous post-AGB component is the primary source of both luminosity and current mass loss. Here, we present the results of a seven-year, eight-orbit spectroscopic monitoring program of HD 44179, designed to uncover new information about the source of the Lyman/far-ultraviolet continuum in the system as well as the driving mechanism for the bipolar outflow producing the current nebula. Our observations of the H-alpha line profile around the orbital phase of superior conjunction reveal the secondary component to be the origin of the fast (max. v~560kms km s^{-1})bipolaroutflowintheRedRectangle.ThevariationoftotalHalphafluxfromthecentralHIIregionwithorbitalphasealsoidentifiesthesecondaryoritssurroundingsasthesourceofthefarultravioletionizingradiationinthesystem.Theestimatedmassofthesecondary( 0.94M) bipolar outflow in the Red Rectangle. The variation of total H-alpha flux from the central H II region with orbital phase also identifies the secondary or its surroundings as the source of the far-ultraviolet ionizing radiation in the system. The estimated mass of the secondary (~0.94 M\sun)andthespeedoftheoutflowsuggestthatthiscomponentisamainsequencestarandnotawhitedwarf,aspreviouslysuggested.WeidentifythesourceoftheLyman/farultravioletcontinuuminthesystemasthehot,innerregion(T) and the speed of the outflow suggest that this component is a main sequence star and not a white dwarf, as previously suggested. We identify the source of the Lyman/far-ultraviolet continuum in the system as the hot, inner region (T_{max} \ge 17,000K)ofanaccretiondisksurroundingthesecondary,fedbyRochelobeoverflowfromthepostAGBprimaryatarateofabout K) of an accretion disk surrounding the secondary, fed by Roche lobe overflow from the post-AGB primary at a rate of about 2 - 5\times10^{-5}M M\sunyr yr^{-1}.Thetotalluminosityoftheaccretiondiskaroundthesecondaryisestimatedtobeatleast300L. The total luminosity of the accretion disk around the secondary is estimated to be at least 300 L\sun$, about 5% of the luminosity of the entire system. (abridged)Comment: Accepted for publication in Ap

    Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue

    Get PDF
    The transcription factor T-bet was identified in CD4+ T cells, and it controls interferon γ production and T helper type 1 cell differentiation. T-bet is expressed in certain other leukocytes, and we recently showed (Lord, G.M., R.M. Rao, H. Choe, B.M. Sullivan, A.H. Lichtman, F.W. Luscinskas, and L.H. Glimcher. 2005. Blood. 106:3432–3439) that it regulates T cell trafficking. We examined whether T-bet influences homing of mast cell progenitors (MCp) to peripheral tissues. Surprisingly, we found that MCp homing to the lung or small intestine in T-bet−/− mice is reduced. This is reproduced in adhesion studies using bone marrow–derived MCs (BMMCs) from T-bet−/− mice, which showed diminished adhesion to mucosal addresin cellular adhesion molecule–1 (MAdCAM-1) and vascular cell adhesion molecule–1 (VCAM-1), endothelial ligands required for MCp intestinal homing. MCp, their precursors, and BMMCs do not express T-bet, suggesting that T-bet plays an indirect role in homing. However, adoptive transfer experiments revealed that T-bet expression by BM cells is required for MCp homing to the intestine. Furthermore, transfer of WT BM-derived dendritic cells (DCs) to T-bet−/− mice restores normal MCp intestinal homing in vivo and MCp adhesion to MAdCAM-1 and VCAM-1 in vitro. Nonetheless, T-bet−/− mice respond vigorously to intestinal infection with Trichinella spiralis, eliminating a role for T-bet in MC recruitment to sites of infection and their activation and function. Therefore, remarkably, T-bet expression by DCs indirectly controls MCp homing to mucosal tissues
    corecore