245 research outputs found

    Weak field and slow motion limits in energy-momentum powered gravity

    Full text link
    We explore the weak field and slow motion limits, Newtonian and Post-Newtonian limits, of the energy-momentum powered gravity (EMPG), viz., the energy-momentum squared gravity (EMSG) of the form f(TμνTμν)=α(TμνTμν)ηf(T_{\mu\nu}T^{\mu\nu})=\alpha (T_{\mu\nu}T^{\mu\nu})^{\eta} with α\alpha and η\eta being constants. We have shown that EMPG with η0\eta\geq0 and general relativity (GR) are not distinguishable by local tests, say, the Solar System tests; as they lead to the same gravitational potential form, PPN parameters, and geodesics for the test particles. However, within the EMPG framework, MastM_{\rm ast}, the mass of an astrophysical object inferred from astronomical observations such as planetary orbits and deflection of light, corresponds to the effective mass Meff(α,η,M)=M+Mempg(α,η,M)M_{\rm eff}(\alpha,\eta,M)=M+M_{\rm empg}(\alpha,\eta,M), MM being the actual physical mass and MempgM_{\rm empg} being the modification due to EMPG. Accordingly, while in GR we simply have the relation Mast=MM_{\rm ast}=M, in EMPG we have Mast=M+MempgM_{\rm ast}=M+M_{\rm empg}. Within the framework of EMPG, if there is information about the values of {α,η}\{\alpha,\eta\} pair or MM from other independent phenomena (from cosmological observations, structure of the astrophysical object, etc.), then in principle it is possible to infer not only MastM_{\rm ast} alone from astronomical observations, but MM and MempgM_{\rm empg} separately. For a proper analysis within EMPG framework, it is necessary to describe the slow motion condition (also related to the Newtonian limit approximation) by peff/ρeff1|p_{\rm eff}/\rho_{\rm eff}|\ll1 (where peff=p+pempgp_{\rm eff}=p+p_{\rm empg} and ρeff=ρ+ρempg\rho_{\rm eff}=\rho+\rho_{\rm empg}), whereas this condition leads to p/ρ1|p/\rho|\ll1 in GR.Comment: 12 pages, no figures and table

    Equivalence of matter-type modified gravity theories to general relativity with nonminimal matter interaction

    Full text link
    We show that gravity models, such as f(Lm)f(\mathcal{L}_{\rm m}), f(gμνTμν)f(g_{\mu\nu} T^{\mu\nu}) and f(TμνTμν)f(T_{\mu\nu} T^{\mu\nu}), that modify the introduction of the material source in the usual Einstein-Hilbert action by adding only matter-related terms to the matter Lagrangian density Lm\mathcal{L}_{\rm m} are equivalent to general relativity with nonminimal interactions. Through the redefinition Lm+fLmtot\mathcal{L}_{\rm m}+f \rightarrow \mathcal{L}_{\rm m}^{\rm tot}, these models are exactly GR, yet the usual material field TμνT_{\mu\nu} and its accompanying partner, viz., the modification field TμνmodT_{\mu\nu}^{\rm mod} interact nonminimally. That is, μTμν=Qν=μTμνmod\nabla^{\mu}T_{\mu\nu}=-Q_{\nu}=-\nabla^{\mu}T_{\mu\nu}^{\rm mod}, where QνQ_{\nu} is the interaction kernel that governs the rate of energy transfer. We focus on the particular model, the energy-momentum squared gravity, where the usual material field TμνT_{\mu\nu} brings in an accompanying energy-momentum squared field , TμνemsfT_{\mu\nu}^{\rm emsf} along with a sui generis nonminimal interaction between them. Compared to usual phenomenological nonminimal interaction models in the literature, EMSF gives rise to more intricate interaction kernels having covariant formulation even with simple forms of the ff function. We elaborate upon EMSF via some different aspects: a DE component induced from the interaction of sources such as cold dark matter and relativistic species with their accompanying EMSFs generating interacting DE-DM models, mimicking noncanonical scalar field, etc., or a Hoyle-type creation field generating steady-state universe models extended to fluids other than dust and a mimicker of modified generalized Chaplygin gas. We also demonstrate the proper calculation of second metric variation of Lm\mathcal{L}_{\rm m}, as well as in models that contain scalars like gμνTμν,RμνTμνg_{\mu\nu} T^{\mu\nu}\,,R_{\mu\nu}T^{\mu\nu} and GμνTμνG_{\mu\nu} T^{\mu\nu}.Comment: 16 pages, no figures and table

    Screening Λ\Lambda in a new modified gravity model

    Full text link
    We study a new model of Energy-Momentum Squared Gravity (EMSG), called Energy-Momentum Log Gravity (EMLG), constructed by the addition of the term f(TμνTμν)=αln(λTμνTμν)f(T_{\mu\nu}T^{\mu\nu})=\alpha \ln(\lambda\,T_{\mu\nu}T^{\mu\nu}), envisaged as a correction, to the Einstein-Hilbert action with cosmological constant Λ\Lambda. The choice of this modification is made as a specific way of including new terms in the right-hand side of the Einstein field equations, resulting in constant effective inertial mass density and, importantly, leading to an explicit exact solution of the matter energy density in terms of redshift. We look for viable cosmologies, in particular, an extension of the standard Λ\LambdaCDM model. EMLG provides an effective dynamical dark energy passing below zero at large redshifts, accommodating a mechanism for screening Λ\Lambda in this region, in line with suggestions for alleviating some of the tensions that arise between observational data sets within the standard Λ\LambdaCDM model. We present a detailed theoretical investigation of the model and then constrain the free parameter α\alpha', a normalisation of α\alpha, using the latest observational data. The data does not rule out the Λ\LambdaCDM limit of our model (α=0\alpha'= 0), but prefers slightly negative values of the EMLG model parameter (α=0.032±0.043\alpha'= -0.032\pm 0.043), which leads to the screening of Λ\Lambda. We also discuss how EMLG relaxes the persistent tension that appears in the measurements of H0H_0 within the standard Λ\LambdaCDM model.Comment: 17 pages, 11 figures, 1 table; matches the version published in EPJ

    A four-dimensional {\Lambda}CDM-type cosmological model induced from higher dimensions using a kinematical constraint

    Full text link
    A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes the direct sum of a 3-dimensional (physical, flat) external space metric and an n-dimensional (compact, flat) internal space metric. A simple kinematical constraint is postulated that correlates the expansion rates of the external and internal spaces in terms of a real parameter {\lambda}. A specific solution for which both the external and internal spaces expand at different rates is given analytically for n=3. Assuming that the internal dimensions were at Planck length scales when the external space starts with a Big Bang (t=0), they expand only 1.49 times and stay at Planck length scales even in the present age of the universe (13.7 Gyr). The effective four dimensional universe would exhibit a behavior consistent with our current understanding of the observed universe. It would start in a stiff fluid dominated phase and evolve through radiation dominated and pressureless matter dominated phases, eventually going into a de Sitter phase at late times.Comment: 12 pages, 8 figures; matches the version published in General Relativity and Gravitatio

    Covid-19 and the quality of life of people with dementia and their carers—The TFD-C19 study

    Get PDF
    Introduction COVID-19 has placed unprecedented pressure on dementia health and social care systems worldwide. This has resulted in reduced services and support for people with dementia and their family carers. There are gaps in the evidence on the impact of the pandemic on Quality of Life (QoL). We carried out a study on the impact of the pandemic on the QoL of a group of people with dementia and their family carers who were part of a larger existing cohort study. Methods We quantitatively measured QoL, on two occasions during the two national lockdowns in 2020 and compared these data with those obtained when they entered the study (before the pandemic). Measures used included: DEMQOL-Proxy, Clinical Dementia Rating Scale and C-DEMQOL. To understand how QoL changed over time, a repeated measures ANOVA was run for each dependent variable with the following variables entered as co-variates: duration in study, baseline dementia severity, gender of the family carer, gender of the person with dementia, family carer relationship, dementia type, living status, age of the person with dementia, and age of the family carer. Results 248 participants took part in the study. QoL scores did not significantly decline between either time period for the person with dementia or their family carer. There was variation in subgroups; with co-resident status, carer relationship, gender of the person with dementia, age of the person with dementia, and baseline cognitive status influencing QoL outcomes in family carers. Discussion It is striking that people with dementia and their carers did not report a decline in QoL during the pandemic or in the months following restrictions suggesting the possibility of resilience. Variation in subgroups suggests that specific groups of family carers were more vulnerable to lower QoL; indicating the need for more tailored, nuanced support during this period. </jats:sec

    Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field

    Full text link
    Motivated by the couplings of the dilaton in four-dimensional effective actions, we investigate the cosmological consequences of a scalar field coupled both to matter and a Maxwell-type vector field. The vector field has a background isotropy-violating component. New anisotropic scaling solutions which can be responsible for the matter and dark energy dominated epochs are identified and explored. For a large parameter region the universe expands almost isotropically. Using that the CMB quadrupole is extremely sensitive to shear, we constrain the ratio of the matter coupling to the vector coupling to be less than 10^(-5). Moreover, we identify a large parameter region, corresponding to a strong vector coupling regime, yielding exciting and viable cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06
    corecore