22 research outputs found

    External and internal focus of attention differentially modulate corticospinal excitability in anticipatory postural adjustments

    Get PDF
    Whether attentional focus modulates the corticospinal excitability of the lower limb muscles in anticipatory postural adjustments (APAs) when performing a ballistic movement of the upper limb remains unclear. The present study used transcranial magnetic stimulation (TMS) to examine the corticospinal excitability of the lower limb muscles along with the kinematic profiles during dart throwing with different attentional foci, external focus (EF) and internal focus (IF). In 13 healthy participants, TMS was applied immediately before electromyographic onset of the tibialis anterior (TA) muscle, and the motor evoked potential (MEP) was recorded in the TA and soleus (SOL) muscles. The performance accuracy was significantly higher in the EF condition than in the IF condition. In both EF and IF conditions, MEP amplitude in the TA muscle, but not the SOL muscle, was significantly higher immediately before TA muscle onset (− 100, − 50, and 0 ms) compared to the control. In particular, the MEP increment in the TA muscle before TA muscle onset (− 50 and 0 ms) was significantly larger in the EF condition than in the IF condition. Our findings provide the first evidence for the modulation of corticospinal excitability in APA by changing attentional focus

    Case Report: Event-Related Desynchronization Observed During Volitional Swallow by Electroencephalography Recordings in ALS Patients With Dysphagia

    Get PDF
    Dysphagia is a severe disability affecting daily life in patients with amyotrophic lateral sclerosis (ALS). It is caused by degeneration of both the bulbar motor neurons and cortical motoneurons projecting to the oropharyngeal areas. A previous report showed decreased event-related desynchronization (ERD) in the medial sensorimotor areas in ALS dysphagic patients. In the process of degeneration, brain reorganization may also be induced in other areas than the sensorimotor cortices. Furthermore, ALS patients with dysphagia often show a longer duration of swallowing. However, there have been no reports on brain activity in other cortical areas and the time course of brain activity during prolonged swallowing in these patients. In this case report, we investigated the distribution and the time course of ERD and corticomuscular coherence (CMC) in the beta (15-25 Hz) frequency band during volitional swallow using electroencephalography (EEG) in two patients with ALS. Case 1 (a 71-year-old man) was diagnosed 2 years before the evaluation. His first symptom was muscle weakness in the right hand; 5 months later, dysphagia developed and exacerbated. Since his dietary intake decreased, he was given an implantable venous access port. Case 2 (a 64-year-old woman) was diagnosed 1 year before the evaluation. Her first symptom was open-nasal voice and dysarthria; 3 months later, dysphagia developed and exacerbated. She was given a percutaneous endoscopic gastrostomy. EEG recordings were performed during volitional swallowing, and the ERD was calculated. The average swallow durations were 7.6 ± 3.0 s in Case 1 and 8.3 ± 2.9 s in Case 2. The significant ERD was localized in the prefrontal and premotor areas and lasted from a few seconds after the initiation of swallowing to the end in Case 1. The ERD was localized in the lateral sensorimotor areas only at the initiation of swallowing in Case 2. CMC was not observed in either case. These results suggest that compensatory processes for cortical motor outputs might depend on individual patients and that a new therapeutic approach using ERD should be developed according to the individuality of ALS patients with dysphagia

    Case report: A novel approach of closed-loop brain stimulation combined with robot gait training in post-stroke gait disturbance

    Get PDF
    Most post-stroke patients have long-lasting gait disturbances that reduce their daily activities. They often show impaired hip and knee joint flexion and ankle dorsiflexion of the lower limbs during the swing phase of gait, which is controlled by the corticospinal tract from the primary motor cortex (M1). Recently, we reported that gait-synchronized closed-loop brain stimulation targeting swing phase-related activity in the affected M1 can improve gait function in post-stroke patients. Subsequently, a gait-training robot (Orthobot®) was developed that could assist lower-limb joint movements during the swing phase of gait. Therefore, we investigated whether gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase could enhance the recovery of post-stroke gait disturbance. A 57-year-old female patient with chronic post-stroke hemiparesis underwent closed-loop brain stimulation combined with robot-assisted training for 10 min 2 years after left pons infarction. For closed-loop brain stimulation, we used transcranial oscillatory electrical current stimulation over the lesioned M1 foot area with 1.5 mA of DC offset and 0–3 mA of sine-wave formed currents triggered by the paretic heel contact to set the maximum current just before the swing phase (intervention A; two times repeated, A1 and A2). According to the N-of-1 study design, we also performed sham stimulation (intervention B) and control stimulation not targeting the swing phase (intervention C) combined with robot-assisted training in the order of A1-B-A2-C interventions. As a result, we found larger improvements in gait speed, the Timed Up and Go test result, and muscle strength after the A1 and A2 interventions than after the B and C interventions. After confirming the short-term effects, we performed an additional long-term intervention twice a week for 5 weeks, for a total of 10 sessions. Gait parameters also largely improved after long-term intervention. Gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase of gait may promote the recovery of gait function in post-stroke patients. Further studies with a larger number of patients are necessary

    Medium-chain fatty acids suppress lipotoxicity-induced hepatic fibrosis via the immunomodulating receptor GPR84

    Get PDF
    食事性肥満から肝炎発症に関わる制御因子の同定 --中鎖脂肪酸油による予防・GPR84標的NASH治療薬の可能性--. 京都大学プレスリリース. 2023-01-18.Medium-chain triglycerides (MCTs), which consist of medium-chain fatty acids (MCFAs), are unique forms of dietary fat with various health benefits. G protein–coupled 84 (GPR84) acts as a receptor for MCFAs (especially C10:0 and C12:0); however, GPR84 is still considered an orphan receptor, and the nutritional signaling of endogenous and dietary MCFAs via GPR84 remains unclear. Here, we showed that endogenous MCFA-mediated GPR84 signaling protected hepatic functions from diet-induced lipotoxicity. Under high-fat diet (HFD) conditions, GPR84-deficient mice exhibited nonalcoholic steatohepatitis (NASH) and the progression of hepatic fibrosis but not steatosis. With markedly increased hepatic MCFA levels under HFD, GPR84 suppressed lipotoxicity-induced macrophage overactivation. Thus, GPR84 is an immunomodulating receptor that suppresses excessive dietary fat intake–induced toxicity by sensing increases in MCFAs. Additionally, administering MCTs, MCFAs (C10:0 or C12:0, but not C8:0), or GPR84 agonists effectively improved NASH in mouse models. Therefore, exogenous GPR84 stimulation is a potential strategy for treating NASH

    Induction of liver-resident memory T cells and protection at liver-stage malaria by mRNA-containing lipid nanoparticles

    Get PDF
    Recent studies have suggested that CD8+ liver-resident memory T (TRM) cells are crucial in the protection against liver-stage malaria. We used liver-directed mRNA-containing lipid nanoparticles (mRNA-LNPs) to induce liver TRM cells in a murine model. Single-dose intravenous injections of ovalbumin mRNA-LNPs effectively induced antigen-specific cytotoxic T lymphocytes in a dose-dependent manner in the liver on day 7. TRM cells (CD8+ CD44hi CD62Llo CD69+ KLRG1-) were induced 5 weeks after immunization. To examine the protective efficacy, mice were intramuscularly immunized with two doses of circumsporozoite protein mRNA-LNPs at 3-week intervals and challenged with sporozoites of Plasmodium berghei ANKA. Sterile immunity was observed in some of the mice, and the other mice showed a delay in blood-stage development when compared with the control mice. mRNA-LNPs therefore induce memory CD8+ T cells that can protect against sporozoites during liver-stage malaria and may provide a basis for vaccines against the disease

    Evolution of Chamber Music for Wind Instruments (flutes)

    No full text
    This presentation would partially trace the history of early work chamber works and then culminate with a performance of the Suite in Bb major for 13 Winds by Richard Strauss

    McCraw Quintet

    No full text
    Furman Jazz Combos will play during lunch time at the Paddock in the Trone Center. They will be joined by faculty members Matt Olson and Steve Watson, who will perform with the groups

    Evolution of Chamber Music for Wind Instruments (tuba)

    No full text
    This presentation would partially trace the history of early work chamber works and then culminate with a performance of the Suite in Bb major for 13 Winds by Richard Strauss

    Anti-EGFR VHH Antibody under Thermal Stress Is Better Solubilized with a Lysine than with an Arginine SEP Tag

    No full text
    In this study, we assessed the potential of arginine and lysine solubility-enhancing peptide (SEP) tags to control the solubility of a model protein, anti-EGFR VHH-7D12, in a thermally denatured state at a high temperature. We produced VHH-7D12 antibodies attached with a C-terminal SEP tag made of either five or nine arginines or lysines (7D12-C5R, 7D12-C9R, 7D12-C5K and 7D12-C9K, respectively). The 5-arginine and 5-lysine SEP tags increased the E. coli expression of VHH-7D12 by over 80%. Biophysical and biochemical analysis confirmed the native-like secondary and tertiary structural properties and the monomeric nature of all VHH-7D12 variants. Moreover, all VHH-7D12 variants retained a full binding activity to the EGFR extracellular domain. Finally, thermal stress with 45-minute incubation at 60 and 75 °C, where VHH-7D12 variants are unfolded, showed that the untagged VHH-7D12 formed aggregates in all of the four buffers, and the supernatant protein concentration was reduced by up to 35%. 7D12-C5R and 7D12-C9R did not aggregate in Na-acetate (pH 4.7) and Tris-HCl (pH 8.5) but formed aggregates in phosphate buffer (PB, pH 7.4) and phosphate buffer saline (PBS, pH 7.4). The lysine tags (either C5K or C9K) had the strongest solubilization effect, and both 7D12-C5K and 7D12-C9K remained in the supernatant. Altogether, our results indicate that, under a thermal stress condition, the lysine SEP tags solubilization effect is more potent than that of an arginine SEP tags, and the SEP tags did not affect the structural and functional properties of the protein

    Comparison of gamma index based on dosimetric error and clinically relevant dose–volume index based on three-dimensional dose prediction in breast intensity-modulated radiation therapy

    No full text
    Abstract Background Measurement-guided dose reconstruction has lately attracted significant attention because it can predict the delivered patient dose distribution. Although the treatment planning system (TPS) uses sophisticated algorithm to calculate the dose distribution, the calculation accuracy depends on the particular TPS used. This study aimed to investigate the relationship between the gamma passing rate (GPR) and the clinically relevant dose–volume index based on the predicted 3D patient dose distribution derived from two TPSs (XiO, RayStation). Methods Twenty-one breast intensity-modulated radiation therapy plans were inversely optimized using XiO. With the same plans, both TPSs calculated the planned dose distribution. We conducted per-beam measurements on the coronal plane using a 2D array detector and analyzed the difference in 2D GPRs between the measured and planned doses by commercial software. Using in-house software, we calculated the predicted 3D patient dose distribution and derived the predicted 3D GPR, the predicted per-organ 3D GPR, and the predicted clinically relevant dose–volume indices [dose–volume histogram metrics and the value of the tumor-control probability/normal tissue complication probability of the planning target volume and organs at risk]. The results derived from XiO were compared with those from RayStation. Results While the mean 2D GPRs derived from both TPSs were 98.1% (XiO) and 100% (RayStation), the mean predicted 3D GPRs of ipsilateral lung (73.3% [XiO] and 85.9% [RayStation]; p < 0.001) had no correlation with 2D GPRs under the 3% global/3 mm criterion. Besides, this significant difference in terms of referenced TPS between XiO and RayStation could be explained by the fact that the error of predicted V5Gy of ipsilateral lung derived from XiO (29.6%) was significantly larger than that derived from RayStation (− 0.2%; p < 0.001). Conclusions GPR is useful as a patient quality assurance to detect dosimetric errors; however, it does not necessarily contain detailed information on errors. Using the predicted clinically relevant dose–volume indices, the clinical interpretation of dosimetric errors can be obtained. We conclude that a clinically relevant dose–volume index based on the predicted 3D patient dose distribution could add to the clinical and biological considerations in the GPR, if we can guarantee the dose calculation accuracy of referenced TPS
    corecore