16 research outputs found

    Combining ability and performance of extra-early maturing yellow maize inbreds in hybrid combinations under drought and rain-fed conditions

    Get PDF
    Article purchased; Published online: 06 Nov 2017Maize (Zea mays L.) is a major staple food and cash crop in sub-Saharan Africa (SSA). However, its production and productivity are severely constrained by drought. A total of 120 single-cross hybrids and an open-pollinated control variety were evaluated for 2 years at two locations under managed drought and rain-fed conditions in Nigeria. The objective of the present study was to assess their performance, classify them into distinct heterotic groups and identify promising hybrids for commercialization in the West and Central Africa sub-region. General combining ability and specific combining ability mean squares were highly significant for grain yield and other traits under the research environments. However, there was a preponderance of additive gene action over non-additive. Only six out of 39 inbreds were classified into distinct heterotic groups by the testers. The highest-yielding drought-tolerant hybrid, TZEEI 102 × TZEEI 95, out-yielded the open-pollinated control variety by 43·70%. The average yield reduction under drought was 54·90% of the yield under rain-fed conditions. The hybrids TZEEI 81 × TZEE1 79, TZEEI 100 × TZEEI 63 and TZEEI 64 × TZEEI 79 were the highest-yielding and most stable across environments. These outstanding drought-tolerant hybrids, which are also resistant to Striga, have the potential to contribute to food security and increased incomes in SSA and should be tested extensively on-farm and commercialized

    Yield gains in extra-early maize cultivars of three breeding eras under multiple environments

    Get PDF
    Open Access JournalAvailability of extra-early maize cultivars has facilitated the expansion of maize production into savannas of West and Central Africa (WCA). Fifty-six extra-early maize cultivars of three breeding eras;1995 to 2000, 2001 to 2006, and 2007 to 2012 were evaluated for 2 yr under 24 multiple-stress and 28 non-stress environments in WCA. Objectives of the study were to determine genetic improvement in grain yield of cultivars developed during the breeding eras, and identify high-yielding and s multiple-stress and non-stress environments. Yield gains from era 1 to era 3 under multiple stresses was associated with increased days to anthesis, reduced stalk lodging, and improved husk cover. Cultivars 2004 TZEE-Y Pop STR C4, TZEE-W Pop STR QPM C0, and TZEE-W Pop STR BC2 C0 of era 2; and TZEE-W STR 107 BC1, TZEE-W Pop STR C5, and 2012 TZEE-Y DT STR C5 of era 3 were high-yielding and stable across multiple-stress environments while 98 Syn EE-W from era 1, FERKE TZEE-W STR, TZEE-W Pop STR C3, and TZEE-Y Pop STR QPM C0 from era 2, and TZEE-W Pop STR C5, 2009 TZEE-OR2 STR QPM, 2009 TZEE-W STR, TZEE-Y STR 106, and TZEE-W DT C0 STR C5 from era 3 were outstanding across non-stress environments and should be tested extensively and commercialized. Considerable improvement has been made in breeding for multiple-stress tolerant extra-early maize cultivars

    Genetic diversity and inter-trait relationships among maize inbreds containing genes from Zea diploperennis and hybrid performance under contrasting environments

    Get PDF
    Open Access Journal; Published online: 27 Sep 2020Accurate estimation of genetic variability present in tropical maize inbreds with varying reactions to Strigahermonthica infestation is essential for efficient and sustainable utilization to ensure increased genetic gain in a breeding program. Thirty-six early maturing maize inbred lines and 156 single cross hybrids were evaluated under Striga-infested and non-infested conditions in Nigeria during the 2014 and 2015 cropping seasons. Under Striga infestation, grain yield ranged from 1134 kg ha−1 for TZEI 26 × TZEI 5 to 5362 kg ha−1 for TZdEI 173 × TZdEI 280. The average yield reduction of the hybrids under Striga infestation was 44% relative to the performance under non-infested environments. Using 4440 high-quality DArT markers, clustering and population structure analyses separated the inbred lines into three distinct groups based on the genetic distance indicating high level of genetic variability among the lines. The base index of the International Institute of Tropical Agriculture (IITA) identified 50% of the inbred lines as Striga resistant. The genetic diversity study provided an opportunity for selecting divergent parents for tagging candidate genes and quantitative trait loci for marker-assisted introgression of Striga resistance genes into early maturing tropical maize breeding populations. The most reliable secondary trait for indirect selection for grain yield under Striga infestation was the ear aspect

    Developing high-yielding Striga-resistant maize in sub-Saharan Africa

    No full text
    Striga hermonthica is a major stress of maize in sub-Saharan Africa (SSA). The International Institute of Tropical Agriculture (IITA), in collaboration with national scientists, have used team approach to investigate how best to solve the problem. Emphasis was on (i) establishing a reliable infestation technique for selecting resistant/tolerant genotypes, (ii) availability of appropriate germplasm and good sources of Striga resistance, (iii) use of appropriate breeding methods for incorporating resistance genes into adapted germplasm, and (iv) extensive multilocational evaluation to identify genotypes with stable performance. Host plant resistance, with additive-dominance model, has been the major control option for S. hermonthica infestation on maize. Recurrent selection, followed by hybridization of inbred lines developed from its products, have been used to identify high-yielding, stable hybrids for commercialization in SSA. In a study involving early-maturing tropical maize inbred lines, 24 single nucleotide polymorphism (SNP) markers significantly associated with grain yield, Striga damage, ears per plant, and ear aspect under Striga infestation were detected. In a quantitative trait loci (QTL) mapping study involving extra-early white BC1S1 families obtained from TZEEI 29 (Striga-resistant) and TZEEI 23 (Striga susceptible) inbreds, 14 QTLs were identified for Striga resistance/tolerance traits. In a second QTL study involving the extra-early yellow F2:3 families derived from the Striga-resistant parent (TZEEI 79) and the susceptible parent (TZdEEI 11), 12 QTL were identified for 4 Striga resistance/tolerance traits. QTL identified in the studies would be invaluable for rapid introgression of Striga resistance genes into maize genotypes using markerassisted selection approaches after validation of QTL in inbreds

    Changes in genetic variances and heritabilities in an early white maize population following S1 selection for grain yield, Striga resistance and drought tolerance

    No full text
    Published online: 17 October 2016Drought is a major constraint to maize production in West and Central Africa (WCA). Assessment of genetic gain from S1 recurrent selection under drought is crucial for the development of drought tolerance breeding strategies. In an early white population, 60 S1 families each derived from the base population and three cycles of selection were evaluated under drought and well-watered conditions at two locations in Nigeria for 2 years to determine genetic variability, gains from selection and predict response to selection for grain yield and other traits. Genetic variances generally decreased for yield and other traits in advanced cycles under drought and well-watered conditions except yield and ear height under well-watered conditions. Similarly, heritabilities for yield and other traits decreased in advanced cycles under drought but increased in advanced cycles under well-watered conditions. Realized gain for yield was 0·291 t/ha, corresponding to 30·5% per cycle under drought and 0·352 kg/ha with a corresponding gain of 16·7% per cycle under well-watered conditions. Predicted gain based on C3 was 0·282 and 0·583 t/ha under drought and well-watered conditions. Low genetic variances, heritabilities and predicted gain for yield and other traits suggested a need to introgress drought tolerance genes into the population

    Genetic diversity assessment of extraearly maturing yellow maize inbreds and hybrid performance in Strigainfested and Strigafree environments

    No full text
    Maize (Zea mays L.), a major staple food crop in West and Central Africa (WCA), is adapted to all agro-ecologies in the sub-region. Its production in the sub-region is greatly constrained by infestation of Striga hermonthica (Del.) Benth. The performance and stability of the extra-early maturing hybrids, which are particularly adapted to areas with short growing seasons, were assessed under Striga-infested and Striga-free conditions. A total of 120 extra-early hybrids and an open-pollinated variety (OPV) 2008 Syn EE-Y DT STR used as a control were evaluated at two locations each under Striga-infested (Mokwa and Abuja) and Striga-free (Ikenne and Mokwa) conditions in 2010/11. The Striga-resistant hybrids were characterized by higher grain yield, shorter anthesis–silking interval (ASI), better ear aspect, higher numbers of ears per plant (EPP), lower Striga damage rating, and lower number of emerged Striga plants at 8 and 10 weeks after planting (WAP) compared with the susceptible inbreds. Under Striga infestation, mean grain yield ranged from 0·71 to 3·18 t/ha and 1·19 to 3·94 t/ha under Striga-free conditions. The highest yielding hybrid, TZEEI 83×TZEEI 79, out-yielded the OPV control by 157% under Striga infestation. The hybrids TZEEI 83×TZEEI 79 and TZEEI 67×TZEEI 63 were the highest yielding under both Striga-infested and Striga-free conditions. The genotype main effect plus genotype×environment interaction (GGE) biplot analysis identified TZEEI 88×TZEEI 79 and TZEEI 81×TZEEI 95 as the ideal hybrids across research environments. Twenty-three pairs of simple sequence repeat (SSR) markers were used to assess the genetic diversity among the inbred lines. The correlations between the SSR-based genetic distance (GD) estimates of parental lines and the means observed in F1 hybrid under Striga infestation and optimum growing conditions were not significant for grain yield and other traits except ASI under optimum conditions. Grain yield of inbreds was not significantly correlated with that of F1 hybrids. However, a significant correlation existed between F1 hybrid grain yield and heterosis under Striga infestation (r=0·72, P<0·01). These hybrids have the potential for increasing maize production in Striga endemic areas in WCA

    Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments

    Get PDF
    AbstractFood insecurity and malnutrition are two major challenges facing rural populations in sub-Saharan Africa (SSA). Hybrids of quality protein maize (QPM) have a crucial role here to play because QPM contains increased lysine and tryptophan concentrations and has a higher biological value than the normal maize. Information on the combining ability and heterotic patterns of QPM inbreds is crucial for the success of hybrid programs in the sub-region. Ninety-one diallel crosses derived from 14 early maturing yellow-endosperm QPM inbreds were evaluated from 2010 to 2012 under Striga infested, drought, low-N and optimal environments in Nigeria. The objectives were to (i) examine the combining ability of the set of early yellow QPM inbreds, (ii) classify the inbreds into heterotic groups and identify the best testers (iii) compare the efficiencies of the heterotic grouping methods in classifying the inbreds and (iv) determine the grain yield and stability of the inbreds in hybrid combinations under the research environments. General (GCA) and specific (SCA) combining ability effects were important in the inheritance of grain yield and other traits of the inbreds. However, GCA was more important than SCA under each contrasting environment and across environments suggesting that the additive gene action was more important than the non-additive in the set of inbreds. The SCA effects of grain yield and the heterotic group's SCA and GCA of grain yield (HSGCA) methods classified the inbreds into three groups each, while the heterotic grouping based on GCA of multiple traits (HGCAMT) and the SNP-based genetic distance (GD) methods had two groups each across research environments. There was close correspondence among the classifications of all the grouping methods in terms of placement of inbreds into the same heterotic groups. The SNP-based method was the most efficient and was used to identify TZEQI 87 and TZEQI 91 as the best testers for the SNP-based heterotic groups 1 and 2. The hybrids, TZEQI 87×TZEQI 93, TZEQI 77×TZEQI 91 and TZEQI 80×TZEQI 91 were identified as the most stable and high yielding across research environments and should be commercialized

    Heterotic responses among crosses of IITA and CIMMYT early white maize inbred lines under multiple stress environments

    No full text
    Published online: 03 July 2015Two major constraintsmilitatingagainst the achievement of food security in West Africa (WA) are recurrent drought and poor soil fertility. Seventeen early maturing maize inbreds from IITA and CIMMYT were used as parents to produce 136 diallel crosses which were evaluated along with four checks in contrasting environments atfour locations for 2 year in Nigeria. The objectives of the study were to (i) examine the combin- ing ability of the lines under drought, low soil nitrogen (low N), optimal and across environments; (ii) classify the inbreds into heterotic groups using the specific combining ability (SCA) effects of grain yield, heterotic group’s specific and general combining ability (HSGCA), the heterotic grouping based on general combining ability (GCA) of multiple traits (HGCAMT) and the molecular-based genetic distance methods; (iii) compare the efficiencies of the four heterotic grouping methods in classifying the inbreds and identifying the best testers; and (iv) examine the performance of the inbreds in hybrid combinations across environments. Sum of squares for GCA of inbreds for grain yield and other measured traits were larger than those of the SCA in all environments. The relative importance of GCA to SCA effects for grain yield and other traits increased from stress to nonstress environments with the additive genetic effects accounting for the major portion of the total genetic variation under all research environments. The HSGCA method classified the lines into three groups and was the most efficient because it had the highest breeding efficiency (40 %) in the test environ- ments followed by the HGCAMT, SNP marker-based and the SCA effectsofgrain yieldmethods. Inbred TZEI 19 was identified as the best tester across research environments based on HSGCA method. Hybrids ENT 11 9 TZEI 19 and TZEI 1 9 TZEI 19 were the most outstanding and should be tested extensively in on-farm trials and commercialized
    corecore