24 research outputs found

    Molecular detection of Indian Ocean Lineage Chikungunya virus RNA in field collected Culex quinquefasciatus Say from Bangkok, Thailand but no evidence of virus replication.

    No full text
    Following an outbreak of chikungunya virus (CHIKV) infections in Thailand in 2019, numerous cases of CHIKV infection have been diagnosed in Bangkok, the capital of the country. In our previous investigation of the vectors for disease transmission, we found natural infection of CHIKV in both male and female Aedes aegypti mosquitoes collected from the outbreak areas in Bangkok. Some reports mentioned the detection of CHIKV in Culex mosquitoes. In Thailand, the Culex quinquefasciatus Say mosquito is a common species found in urban and rural settings that coexists with Ae. aegypti. However, the role of Cx. quinquefasciatus mosquitoes in the spread of the Indian Ocean Lineage (IOL) of CHIKV in Thailand has never been investigated. In this study, Cx. quinquefasciatus were collected (16 males and 27 females) from an outbreak area in Bangkok. Eight of the 27 in field-caught female Cx. quinquefasciatus were positive for IOL CHIKV RNA, and 99-100% identity and full 100% coverage of sequences similar to CHIKV isolated from female Ae. aegypti in Bangkok, Thailand, whereas viral RNA was not detected in male samples using nested-RT-PCR. To determine whether CHIKV is able to replicate in Cx. quinquefasciatus, the laboratory strain of Cx. quinquefasciatus was allowed to feed on blood containing IOL CHIKV isolated from patient serum. The nested-RT-PCR, virus isolation, and immunofluorescence assay (IFA) were performed for CHIKV detection and replication. The results showed that CHIKV RNA was detected in Cx. quinquefasciatus until day 4 post infection. CHIKV did not produce any remarkable signs of infection, dissemination, or transmission in Cx. quinquefasciatus, and cytopathic effect (CPE) was not observed in C6/36 cells when infected with supernatant obtained from Cx. quinquefasciatus at days 7, 10, 14, and 21 post infection when compared to Ae. aegypti. The data from this study infer that CHIKV may be detected in Cx. quinquefasciatus but that the mosquito is not able to transmit CHIKV in Thailand

    Detection of SARS-CoV-2 and Variants in Hospital Wastewater in a Developing Country

    No full text
    Wastewater-based epidemiology (WBE) is a beneficial tool for comprehensive health information on communities, especially during the COVID-19 pandemic. In developing countries, including Thailand, the application of WBE is limited. Few SARS-CoV-2 detections and variants have been monitored in wastewater in these countries. This is because of the time-consuming, low recovery of viruses in the concentration techniques and difficulties in finding the proper primers and amplification kits. Therefore, this study aimed to quantify SARS-CoV-2 RNA concentration using a commercial clinical kit. We identified the SARS-CoV-2 variants and estimated the detection costs in the wastewater samples. One hundred and fifty hospital wastewater samples were filtered with commercial ultrafiltration (UF) and then detected for the SARS-CoV-2 concentration using a Sansure Biotech SARS-CoV-2 kit. The recovery of the virus concentration technique in UF was studied using a surrogate (porcine epidemic diarrhea virus). The virus detection in wastewater was quantified by RT-qPCR. In addition, the mutation sites in the partial spike glycoprotein (S) gene of SARS-CoV-2 were verified using short nested RT-PCR. The results showed a high recovery of the commercial UF (80.53%), and 24.6% of hospital wastewater contained SARS-CoV-2. The detection of SARS-CoV-2 in wastewater cost USD 35.43 per sample. The virus variants revealed V70del, H69del, and V144del mutations in the partial S gene of SARS-CoV-2 in B.1.1.7 (SARS-CoV-2 Alpha variant), and T95I and G142D mutations in B.1.617.2 (Delta variant)

    Molecular Epidemiology and Genetic Diversity of Zika Virus from Field-Caught Mosquitoes in Various Regions of Thailand

    No full text
    Zika virus (ZIKV) infection is an emerging and re-emerging arbovirus disease that is transmitted to humans through the bite of infected mosquitoes. ZIKV infections were first described in Thailand in 1954 from the sera of indigenous residents and several travelers returning from Thailand in 2014. However, reported cases in Thailand have been increasing since 2015 and 2016, and epidemiological information about the vectors of ZIKV is unclear. We investigated the molecular epidemiology and genetic diversity of ZIKV from mosquitoes collected from different geographic regions experiencing ZIKV outbreaks in Thailand. Polymerase chain reaction was used to amplify the non-structural protein (NS5) gene of ZIKV, which was then sequenced. A total of 1026 mosquito samples (626 females, 367 males, and 33 larvae) were collected from active ZIKV patients’ houses. ZIKV was detected in 79 samples (7.7%), including Aedes aegypti (2.24% female, 1.27% male, and 0.19% larvae), Culex quinquefasciatus (1.85% female, 1.66% male, and 0.29% larvae), and Armigeres subalbatus (0.1% female and 0.1% male), whereas no ZIKV was detected in Aedes albopictus. Phylogenetic analysis of the 79 positive samples were classified into two clades: Those closely related to a previous report in Thailand, and those related to ZIKV found in the Americas. This is the first report of the detection of ZIKV in Ae. aegypti, Cx. quinquefasciatus, and Ar. subalbatus mosquitoes, and genetic variations of ZIKV in the mosquitoes collected from several geographic regions of Thailand were examined. Detection of ZIKV in male and larval mosquitoes suggests that vertical transmission of ZIKV occurred in these mosquito species. This study provides a more in-depth understanding of the patterns and epidemiologic data of ZIKV in Thailand; the data could be used for future development of more effective prevention and control strategies of ZIKV in Thailand

    Detection of SARS-CoV-2 and Variants in Hospital Wastewater in a Developing Country

    No full text
    Wastewater-based epidemiology (WBE) is a beneficial tool for comprehensive health information on communities, especially during the COVID-19 pandemic. In developing countries, including Thailand, the application of WBE is limited. Few SARS-CoV-2 detections and variants have been monitored in wastewater in these countries. This is because of the time-consuming, low recovery of viruses in the concentration techniques and difficulties in finding the proper primers and amplification kits. Therefore, this study aimed to quantify SARS-CoV-2 RNA concentration using a commercial clinical kit. We identified the SARS-CoV-2 variants and estimated the detection costs in the wastewater samples. One hundred and fifty hospital wastewater samples were filtered with commercial ultrafiltration (UF) and then detected for the SARS-CoV-2 concentration using a Sansure Biotech SARS-CoV-2 kit. The recovery of the virus concentration technique in UF was studied using a surrogate (porcine epidemic diarrhea virus). The virus detection in wastewater was quantified by RT-qPCR. In addition, the mutation sites in the partial spike glycoprotein (S) gene of SARS-CoV-2 were verified using short nested RT-PCR. The results showed a high recovery of the commercial UF (80.53%), and 24.6% of hospital wastewater contained SARS-CoV-2. The detection of SARS-CoV-2 in wastewater cost USD 35.43 per sample. The virus variants revealed V70del, H69del, and V144del mutations in the partial S gene of SARS-CoV-2 in B.1.1.7 (SARS-CoV-2 Alpha variant), and T95I and G142D mutations in B.1.617.2 (Delta variant)

    Influenza Virus-Associated Fatal Acute Necrotizing Encephalopathy: Role of Nonpermissive Viral Infection?

    No full text
    In 2014, two unusual peaks of H1N1 influenza outbreak occurred in Nakhon Ratchasima Province, in Thailand. Among 2,406 cases, one of the 22 deaths in the province included a 6-year-old boy, who initially presented with acute necrotizing encephalopathy. On the other hand, his sibling was mildly affected by the same influenza virus strain, confirmed by whole-genome sequencing, with one silent mutation. Absence of acute necrotizing encephalopathy and other neurological illnesses in the family and the whole province, with near identical whole viral genomic sequences from the two siblings, and an absence of concomitant severe lung infection (cytokine storm) at onset suggest nonpermissive infection as an alternative pathogenetic mechanism of influenza virus

    Dynamic Measurement of Hemodynamic Parameters and Cardiac Preload in Adults with Dengue: A Prospective Observational Study.

    No full text
    Few previous studies have monitored hemodynamic parameters to determine the physiological process of dengue or examined inferior vena cava (IVC) parameters to assess cardiac preload during the clinical phase of dengue. From January 2013 to July 2015, we prospectively studied 162 hospitalized adults with confirmed dengue viral infection using non-invasive cardiac output monitoring and bedside ultrasonography to determine changes in hemodynamic and IVC parameters and identify the types of circulatory shock that occur in patients with dengue. Of 162 patients with dengue, 17 (10.5%) experienced dengue shock and 145 (89.5%) did not. In patients with shock, the mean arterial pressure was significantly lower on day 6 after fever onset (P = 0.045) and the pulse pressure was significantly lower between days 4 and 7 (P<0.05). The stroke volume index and cardiac index were significantly decreased between days 4 and 15 and between days 5 and 8 after fever onset (P<0.05), respectively. A significant proportion of patients with dengue shock had an IVC diameter <1.5 cm and IVC collapsibility index >50% between days 4 and 5 (P<0.05). Hypovolemic shock was observed in 9 (52.9%) patients and cardiogenic shock in 8 (47.1%), with a median (interquartile range) time to shock onset of 6.0 (5.0-6.5) days after fever onset, which was the median day of defervescence. Intravascular hypovolemia occurred before defervescence, whereas myocardial dysfunction occurred on the day of defervescence until 2 weeks after fever onset. Hypovolemic shock and cardiogenic shock each occurred in approximately half of the patients with dengue shock. Therefore, dynamic measures to estimate changes in hemodynamic parameters and preload should be monitored to ensure adequate fluid therapy among patients with dengue, particularly patients with dengue shock

    Serum procalcitonin and peripheral venous lactate at admission in dengue patients.

    No full text
    <p>(A) Serum procalcitonin levels among patients with and without dengue shock and/or organ failure. (B) Peripheral venous lactate levels among patients with and without dengue shock and/or organ failure. Data are presented as box and whisker plots with median (horizontal line), interquartile range (box), maximum value within 1.5 of interquartile range (whiskers), outliers (circles), and extreme outliers (asterisks).</p

    Serum Procalcitonin and Peripheral Venous Lactate for Predicting Dengue Shock and/or Organ Failure: A Prospective Observational Study

    No full text
    <div><p>Background</p><p>Currently, there are no biomarkers that can predict the incidence of dengue shock and/or organ failure, although the early identification of risk factors is important in determining appropriate management to reduce mortality. Therefore, we sought to determine the factors associated with dengue shock and/or organ failure and to evaluate the prognostic value of serum procalcitonin (PCT) and peripheral venous lactate (PVL) levels as biomarkers of dengue shock and/or organ failure.</p><p>Methodology/Principal Findings</p><p>A prospective observational study was conducted among adults hospitalized for confirmed viral dengue infection at the Hospital for Tropical Diseases in Bangkok, Thailand between October 2013 and July 2015. Data, including baseline characteristics, clinical parameters, laboratory findings, serum PCT and PVL levels, management, and outcomes, were recorded on pre-defined case report forms. Of 160 patients with dengue, 128 (80.0%) patients had dengue without shock or organ failure, whereas 32 (20.0%) patients developed dengue with shock and/or organ failure. Using a stepwise multivariate logistic regression analysis, PCT ≥0.7 ng/mL (odds ratio [OR]: 4.80; 95% confidence interval [CI]: 1.60–14.45; <i>p</i> = 0.005) and PVL ≥2.5 mmol/L (OR: 27.99, 95% CI: 8.47–92.53; <i>p</i> <0.001) were independently associated with dengue shock and/or organ failure. A combination of PCT ≥0.7 ng/mL and PVL ≥2.5 mmol/L provided good prognostic value for predicting dengue shock and/or organ failure, with an area under the receiver operating characteristics curve of 0.83 (95% CI: 0.74–0.92), a sensitivity of 81.2% (95% CI: 63.6–92.8%), and a specificity of 84.4% (95% CI: 76.9–90.2%). Dengue shock patients with non-clearance of PCT and PVL expired during hospitalization.</p><p>Conclusions/Significance</p><p>PCT ≥0.7 ng/mL and PVL ≥2.5 mmol/L were independently associated with dengue shock and/or organ failure. The combination of PCT and PVL levels could be used as prognostic biomarkers for the prediction of dengue shock and/or organ failure.</p></div
    corecore