14 research outputs found

    Sr Isotopic Composition of NIES Certified Reference Material No. 28 Urban Aerosols

    Get PDF
    An interlaboratory study of the National Institute for Environmental Studies (NIES) certified reference material (CRM) No. 28 Urban Aerosols collected from the filters of a central ventilating system in a building in the Beijing city center from 1996 to 2005 was performed to obtain an information value of the Sr isotopic composition. The Sr isotopic composition was measured using multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) to confirm the CRM’s within- and between-bottle homogeneity, and the results showed a 87Sr/86Sr ratio of 0.710227 ± 0.000019 (2SD, n = 18). The Sr isotopic compositions were intercompared using thermal ionization mass spectrometry (TIMS), which showed good agreement with values obtained at NIES. Subsequently, a consistent 87Sr/86Sr ratio was observed between two dissolution (hotplate vs. high-pressure bomb) and Sr separation (Sr spec resin vs. cation exchange resin) methods. To validate and reproduce the accuracy of our analytical methods, the Sr isotopic compositions of secondary reference materials, JB-1b and JA-2, were also measured. Our results showed that NIES CRM No. 28 is appropriate for the quality control of Sr isotope measurements of particulate matter analyses for environmental and geochemical studies

    Carbonaceous achondrites Northwest Africa 6704/6693: Milestones for early Solar System chronology and genealogy

    No full text
    Northwest Africa (NWA) 6704/6693 are medium- to coarse-grained achondrites with unique petrologic and geochemical traits that are distinct from the currently established meteorite groups. Here, we report on the extinct 26Al-26Mg and 53Mn-53Cr systems to establish fine-scale chronology of its formation and Cr and Ti isotopic anomalies to constrain the composition of the source reservoir of NWA 6704/6693. Excesses in the neutron-rich 54Cr and 50Ti isotopes, due to nucleosynthetic anomalies, separate NWA 6704/6693 from the vast majority of established achondrites and instead resemble the excesses seen among the carbonaceous chondrites; specifically, the CR-type chondrites. The excesses in these isotopes indicate a common feeding zone during accretion in the protoplanetary disk between the source of NWA 6704/6693 and that of the carbonaceous chondrites. The 26Al-26Mg data for pyroxene and plagioclase from NWA 6704 yield a (26Al/27Al)0 = (3.15 ± 0.38)×10−7 (MSWD = 0.49) and an initial δ26Mg∗ = −0.004 ± 0.005 at the time of isotopic closure. This initial (26Al/27Al)0 translates to an absolute age of 4563.14 ± 0.38 Ma, relative to the D’Orbigny angrite. However, given the potential heterogeneity of 26Al, the D’Orbigny angrite might not be a good age anchor for the purpose of calculating 26Al-26Mg ages. The 26Al-26Mg age relative to another carbonaceous achondrite, NWA 2976, is 4562.66 ± 0.60 Ma. The 53Mn-53Cr systematics of NWA 6704/6693 indicate a (53Mn/55Mn)0 of (2.59 ± 0.34) × 10−6 (MSWD = 1.2) with an evolved initial ε53Cr of +0.14 ± 0.03. The (53Mn/55Mn)0 yields an 53Mn-53Cr age of 4562.17 ± 0.76 Ma relative to the D’Orbigny angrite. Concordant ages determined using the short-lived 26Al-26Mg and 53Mn-53Cr systems and extant 207Pb-206Pb system (4562.60 ± 0.30 Ma for NWA 6704/6693; Amelin et al., 2019) indicate rapid cooling and nearly contemporaneous closing of multiple isotope systems. The ancient crystallization ages and positive 54Cr and 50Ti anomalies of NWA 6704/6693 indicate widespread melting and differentiation processes occurring in both non-carbonaceous (NC) and carbonaceous chondrite (CC) regions of the protoplanetary disk. Additionally, we report the Cr and Ti isotopic composition for a petrologic range of CR-type materials (CR2, CR6, and achondrites). The additional Cr and Ti isotopic data for these CR-type materials indicates a range in isotopic composition not previously observed based on CR2 chondrites alone

    The CM carbonaceous chondrite regolith Diepenveen

    No full text
    A carbonaceous chondrite was recovered immediately after the fall near the village of Diepenveen in the Netherlands on October 27, 1873, but came to light only in 2012. Analysis of sodium and poly-aromatic hydrocarbon content suggests little contamination from handling. Diepenveen is a regolith breccia with an overall petrology consistent with a CM classification. Unlike most other CM chondrites, the bulk oxygen isotopes are extremely 16O rich, apparently dominated by the signature of anhydrous minerals, distributed on a steep slope pointing to the domain of intrinsic CM water. A small subset plots closer to the normal CM regime, on a parallel line 2 ‰ lower in δ17O. Different lithologies in Diepenveen experienced varying levels of aqueous alteration processing, being less aqueously altered at places rather than more heated. The presence of an agglutinate grain and the properties of methanol-soluble organic compounds point to active impact processing of some of the clasts. Diepenveen belongs to a CM clan with ~5 Ma CRE age, longer than most other CM chondrites, and has a relatively young K-Ar resetting age of ~1.5 Ga. As a CM chondrite, Diepenveen may be representative of samples soon to be returned from the surface of asteroid (162173) Ryugu by the Hayabusa2 spacecraft
    corecore