1,749 research outputs found
Null-stream veto for two co-located detectors: Implementation issues
Time-series data from multiple gravitational wave (GW) detectors can be
linearly combined to form a null-stream, in which all GW information will be
cancelled out. This null-stream can be used to distinguish between actual GW
triggers and spurious noise transients in a search for GW bursts using a
network of detectors. The biggest source of error in the null-stream analysis
comes from the fact that the detector data are not perfectly calibrated. In
this paper, we present an implementation of the null-stream veto in the
simplest network of two co-located detectors. The detectors are assumed to have
calibration uncertainties and correlated noise components. We estimate the
effect of calibration uncertainties in the null-stream veto analysis and
propose a new formulation to overcome this. This new formulation is
demonstrated by doing software injections in Gaussian noise.Comment: Minor changes; To appear in Class. Quantum Grav. (Proc. GWDAW10
Optimal time-domain combination of the two calibrated output quadratures of GEO 600
GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods
Complete phenomenological gravitational waveforms from spinning coalescing binaries
The quest for gravitational waves from coalescing binaries is customarily
performed by the LIGO-Virgo collaboration via matched filtering, which requires
a detailed knowledge of the signal. Complete analytical coalescence waveforms
are currently available only for the non-precessing binary systems. In this
paper we introduce complete phenomenological waveforms for the dominant
quadrupolar mode of generically spinning systems. These waveforms are
constructed by bridging the gap between the analytically known inspiral phase,
described by spin Taylor (T4) approximants in the restricted waveform
approximation, and the ring-down phase through a phenomenological intermediate
phase, calibrated by comparison with specific, numerically generated waveforms,
describing equal mass systems with dimension-less spin magnitudes equal to 0.6.
The overlap integral between numerical and phenomenological waveforms ranges
between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v
A statistical veto method employing an amplitude consistency check
Statistical veto methods are commonly used to reduce the list of candidate gravitational wave (GW) events which are detected as transient (burst) signals in the main output of GW detectors. If a burst event in the GW channel is coincident with an event in a veto channel (where the veto channel does not contain any GW signal), it is possible to veto the event from the GW channel with a low 'false-veto' rate. Unfortunately, many promising veto channels are interferometer channels which can, at some level, contain traces of any detected GW signal. In this case, the application of a 'standard statistical veto' could have a high false-veto rate. We will present an extension to the standard statistical veto method that includes an 'amplitude consistency check'. This method allows the application of statistical vetoes derived from interferometer channels containing GW information with a low false-veto rate. By applying a statistical veto with an amplitude consistency check to data from the GEO 600 detector, veto efficiencies between 5 and 20%, together with a use-percentage of up to 80%, were obtained. The robustness of this veto method was also confirmed by hardware injections. The burst triggers were generated using the mHACR detection algorithm
Inspiral-merger-ringdown waveforms for black-hole binaries with non-precessing spins
We present the first analytical inspiral-merger-ringdown gravitational
waveforms from binary black holes (BBHs) with non-precessing spins, that is
based on a description of the late-inspiral, merger and ringdown in full
general relativity. By matching a post-Newtonian description of the inspiral to
a set of numerical-relativity simulations, we obtain a waveform family with a
conveniently small number of physical parameters. These waveforms will allow us
to detect a larger parameter space of BBH coalescence, including a considerable
fraction of precessing binaries in the comparable-mass regime, thus
significantly improving the expected detection rates.Comment: To appear in Phys. Rev. Lett. Significant new results. One figure
removed due to page limitatio
Asymptotically Matched Spacetime Metric for Non-Precessing, Spinning Black Hole Binaries
We construct a closed-form, fully analytical 4-metric that approximately
represents the spacetime evolution of non-precessing, spinning black hole
binaries from infinite separations up to a few orbits prior to merger. We
employ the technique of asymptotic matching to join a perturbed Kerr metric in
the neighborhood of each spinning black hole to a near-zone, post-Newtonian
metric farther out. The latter is already naturally matched to a far-zone,
post-Minkowskian metric that accounts for full temporal retardation. The result
is a 4-metric that is approximately valid everywhere in space and in a small
bundle of spatial hypersurfaces. We here restrict our attention to quasi-
circular orbits, but the method is valid for any orbital motion or physical
scenario, provided an overlapping region of validity or buffer zone exists. A
simple extension of such a metric will allow for future studies of the
accretion disk and jet dynamics around spinning back hole binaries
A burst search for gravitational waves from binary black holes
Compact binary coalescence (CBC) is one of the most promising sources of
gravitational waves. These sources are usually searched for with matched
filters which require accurate calculation of the GW waveforms and generation
of large template banks. We present a complementary search technique based on
algorithms used in un-modeled searches. Initially designed for detection of
un-modeled bursts, which can span a very large set of waveform morphologies,
the search algorithm presented here is constrained for targeted detection of
the smaller subset of CBC signals. The constraint is based on the assumption of
elliptical polarisation for signals received at the detector. We expect that
the algorithm is sensitive to CBC signals in a wide range of masses, mass
ratios, and spin parameters. In preparation for the analysis of data from the
fifth LIGO-Virgo science run (S5), we performed preliminary studies of the
algorithm on test data. We present the sensitivity of the search to different
types of simulated CBC waveforms. Also, we discuss how to extend the results of
the test run into a search over all of the current LIGO-Virgo data set.Comment: 12 pages, 4 figures, 2 tables, submitted for publication in CQG in
the special issue for the conference proceedings of GWDAW13; corrected some
typos, addressed some minor reviewer comments one section restructured and
references updated and correcte
Physical instrumental vetoes for gravitational-wave burst triggers
We present a robust strategy to \emph{veto} certain classes of instrumental
glitches that appear at the output of interferometric gravitational-wave (GW)
detectors.This veto method is `physical' in the sense that, in order to veto a
burst trigger, we make use of our knowledge of the coupling of different
detector subsystems to the main detector output. The main idea behind this
method is that the noise in an instrumental channel X can be \emph{transferred}
to the detector output (channel H) using the \emph{transfer function} from X to
H, provided the noise coupling is \emph{linear} and the transfer function is
\emph{unique}. If a non-stationarity in channel H is causally related to one in
channel X, the two have to be consistent with the transfer function. We
formulate two methods for testing the consistency between the burst triggers in
channel X and channel H. One method makes use of the \emph{null-stream}
constructed from channel H and the \emph{transferred} channel X, and the second
involves cross-correlating the two. We demonstrate the efficiency of the veto
by `injecting' instrumental glitches in the hardware of the GEO 600 detector.
The \emph{veto safety} is demonstrated by performing GW-like hardware
injections. We also show an example application of this method using 5 days of
data from the fifth science run of GEO 600. The method is found to have very
high veto efficiency with a very low accidental veto rate.Comment: Minor changes, To appear in Phys. Rev.
Dual Linearised Gravity in Arbitrary Dimensions
We construct dual formulation of linearised gravity in first order tetrad
formalism in arbitrary dimensions within the path integral framework following
the standard duality algorithm making use of the global shift symmetry of the
tetrad field. The dual partition function is in terms of the (mixed symmetric)
tensor field in {\it frame-like}
formulation. We obtain in d-dimensions the dual Lagrangian in a closed form in
terms of field strength of the dual frame-like field. Next by coupling a source
with the (linear) Riemann tensor in d-dimensions, dual generating functional is
obtained. Using this an operator mapping between (linear) Riemann tensor and
Riemann tensor corresponding to the dual field is derived and we also discuss
the exchange of equations of motion and Bianchi identity.Comment: 14 pages, typos corrected, Published version: Class. Quantum Grav.
22(2005)538
Probing the large scale structure using gravitational-wave observations of binary black holes
Third generation gravitational-wave (GW) detectors are expected to detect a
large number of binary black holes (BBHs) to large redshifts, opening up an
independent probe of the large scale structure using their clustering. This
probe will be complementary to the probes using galaxy clustering -- GW events
could be observed up to very large redshifts () although the source
localization will be much poorer at large distances ( tens of square
degrees). We explore the possibility of probing the large scale structure from
the spatial distribution of the observed BBH population, using their two-point
(auto)correlation function. We find that we can estimate the bias factor of
population of BBH (up to ) with a few years of observations with
these detectors. Our method relies solely on the source-location posteriors
obtained the GW events and does not require any information from
electromagnetic observations. This will help in identifying the type of
galaxies that host the BBH population, thus shedding light on their origins.Comment: 7 pages, 5 figure
- …