7 research outputs found

    Negative Emission Power Plants:Thermodynamic Modeling and Evaluation of a Biomass-Based Integrated Gasification Solid Oxide Fuel Cell/Gas Turbine System for Power, Heat, and Biochar Co-Production—Part 1

    Get PDF
    This article is the first of a two-part series presenting the thermodynamic evaluation and techno-economics of developing negative-emission power plants. The aim of this research is to evaluate the potential of biochar co-production in negative-emission power plants based on biomass-fed integrated gasification solid oxide fuel cell systems with carbon capture and storage (BIGFC/CCS) units. The influence of two gasification agents, namely, air and steam-oxygen, on the proposed system is investigated. In Part I, we present the thermodynamic models. A sensitivity analysis is carried out to investigate the system response to stepwise increase in biochar co-production (up to 10% by weight). Providing a secondary oxy-combustor in the steam-oxygen gasification case has been shown to be a solution to meet the heat requirements of the allothermal gasification process. A comprehensive exergy analysis indicated significant efficiency improvement for the steam-oxygen gasification case. The results show that the biomass steam-oxygen gasification yields the higher electrical exergy efficiency (48.3%) and combined heat and power (CHP) exergy efficiency (54.6%) for the similar rates of biochar co-production. The specific power output per unit of CO2 stored is 2.65 MW/(kg/s) and 3.58 MW/(kg/s) for the air and steam-oxygen gasification cases, respectively, when the biochar is co-produced at 10% by weight for the given biomass flow of 20 kg/s. Moreover, the total CO2 stored due to the proposed system is calculated as 133.9 t/h, and it is estimated to remove 1.17 Mt of CO2 from the atmosphere annually (when the biochar-based carbon storage is also considered). The models are used for the techno-economic analysis presented in Part II of the series

    Characterization of cardiac fibroblast-extracellular matrix crosstalk across developmental ages provides insight into age-related changes in cardiac repair

    Get PDF
    Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI). Instead, immune cells and resident cardiac fibroblasts (CFs), the cells responsible for the maintenance of the cardiac extracellular matrix (cECM), drive an inflammatory wound healing response, which leads to fibrotic scar tissue. However, fibrosis is reduced in fetal and early (<1-week-old) neonatal mammals, which exhibit a transient capability for regenerative tissue remodeling. Recent work by our laboratory and others suggests this is in part due to compositional differences in the cECM and functional differences in CFs with respect to developmental age. Specifically, fetal cECM and CFs appear to mitigate functional loss in MI models and engineered cardiac tissues, compared to adult CFs and cECM. We conducted 2D studies of CFs on solubilized fetal and adult cECM to investigate whether these age-specific functional differences are synergistic with respect to their impact on CF phenotype and, therefore, cardiac wound healing. We found that the CF migration rate and stiffness vary with respect to cell and cECM developmental age and that CF transition to a fibrotic phenotype can be partially attenuated in the fetal cECM. However, this effect was not observed when cells were treated with cytokine TGF-β1, suggesting that inflammatory signaling factors are the dominant driver of the fibroblast phenotype. This information may be valuable for targeted therapies aimed at modifying the CF wound healing response and is broadly applicable to age-related studies of cardiac remodeling

    Study of Trends in System Efficiency for a Biomass Integrated Gasification Fuel Cell Gas Turbine System when Carbon Dioxide Content is Enhanced

    Get PDF
    The performance of a 30-kW gasifier–SOFC–GT system was evaluated using thermodynamic calculations. Nickel/Gadolinia Doped Ceria (Ni/GDC) anodes were utilized for Solid Oxide Fuel Cells (SOFCs). These systems can achieve high electrical efficiencies of above 50%. The goal of the study is to evaluate trends in system efficiency when carbon dioxide as a gasifier agent is increased in enhanced carbon dioxide system. Carbon dioxide content was increased in both systems, leading to variants of both systems as compositions changed until they could no longer function efficiently. The trends in system variants were monitored. Although the gross efficiency increased, the net efficiency of the enhanced carbon dioxide system dropped. Absorbed heat and delivered gross which deals with flow of energy in sources / sinks was lower in enhanced scheme. Auxiliary power consumed was higher in enhanced carbon dioxide system variants, indicating that the compressors consume more power. Delivered net power was dropping for the enhanced case variants. Enhanced carbon dioxide system variants seem to have a slightly higher total electrical efficiency by a close range of less than 1%.</p

    Negative emission power plants: Techno-economic analysis of a biomass-based integrated gasification solid oxide fuel cell/gas turbine system for power, heat, and biochar co-production—part 2

    No full text
    In our previous work (Part I), we evaluated the thermodynamic models of the biomass-fed integrated gasification solid oxide fuel cell system with a carbon capture and storage (BIGFC/CCS) unit. In this work (Part II), the techno-economic analysis of the proposed negative emission power plants is carried out. Levelized cost of electricity, net present value (NPV), payback period, internal rate of return (IRR), and levelized cost of negative carbon (LCNC) are the key economic parameters evaluated. The results of a series of sensitivity analysis show the impact of gasification agents and stepwise increase in biochar co-production on the performance of the system. The total overnight cost is estimated to be 6197 /kWand5567/kW and 5567 /kW for the air and steam-oxygen gasification BIGFC/CCS systems, respectively. Steam-oxygen gasification is found to be more economically beneficial than air gasification one for all of the cases studied. Economically viable biochar co-production cases are identified to ascertain the influence of capital cost, operating cost, biomass cost, plant capacity factor, and tax. Moreover, the effect of the carbon credit scenario on the economic indicators is also reported. The results show that the most effective economic performance from the steam-oxygen gasification case reported an NPV of 3542 M,anIRRof24.2, an IRR of 24.2%, and a payback period of 3.3 years, with an LCNC of -322.5/t of CO2. Compiling the results from Part I and Part II shows that it is easier to achieve negative emission using the steam-oxygen gasification of a BIGFC/CCS system. These results are expected to be helpful for stakeholders in identifying appealing negative emissions power plant projects for near and long-term future investments

    Negative Emission Power Plants: Thermodynamic Modeling and Evaluation of a Biomass-Based Integrated Gasification Solid Oxide Fuel Cell/Gas Turbine System for Power, Heat, and Biochar Co-Production—Part 1

    Get PDF
    This article is the first of a two-part series presenting the thermodynamic evaluation and techno-economics of developing negative-emission power plants. The aim of this research is to evaluate the potential of biochar co-production in negative-emission power plants based on biomass-fed integrated gasification solid oxide fuel cell systems with carbon capture and storage (BIGFC/CCS) units. The influence of two gasification agents, namely, air and steam-oxygen, on the proposed system is investigated. In Part I, we present the thermodynamic models. A sensitivity analysis is carried out to investigate the system response to stepwise increase in biochar co-production (up to 10% by weight). Providing a secondary oxy-combustor in the steam-oxygen gasification case has been shown to be a solution to meet the heat requirements of the allothermal gasification process. A comprehensive exergy analysis indicated significant efficiency improvement for the steam-oxygen gasification case. The results show that the biomass steam-oxygen gasification yields the higher electrical exergy efficiency (48.3%) and combined heat and power (CHP) exergy efficiency (54.6%) for the similar rates of biochar co-production. The specific power output per unit of CO2 stored is 2.65 MW/(kg/s) and 3.58 MW/(kg/s) for the air and steam-oxygen gasification cases, respectively, when the biochar is co-produced at 10% by weight for the given biomass flow of 20 kg/s. Moreover, the total CO2 stored due to the proposed system is calculated as 133.9 t/h, and it is estimated to remove 1.17 Mt of CO2 from the atmosphere annually (when the biochar-based carbon storage is also considered). The models are used for the techno-economic analysis presented in Part II of the series.Energy TechnologyProcess and Energ

    Negative Emission Power Plants: Techno-economic analysis of a biomass-based integrated gasification solid oxide fuel cell/gas turbine system for power, heat, and biochar co-production - Part 2

    Get PDF
    In our previous work (Part I), we evaluated the thermodynamic models of the biomass-fed integrated gasification solid oxide fuel cell system with a carbon capture and storage (BIGFC/CCS) unit. In this work (Part II), the techno-economic analysis of the proposed negative emission power plants is carried out. Levelized cost of electricity, net present value (NPV), payback period, internal rate of return (IRR), and levelized cost of negative carbon (LCNC) are the key economic parameters evaluated. The results of a series of sensitivity analysis show the impact of gasification agents and stepwise increase in biochar co-production on the performance of the system. The total overnight cost is estimated to be 6197 /kWand5567/kW and 5567 /kW for the air and steam-oxygen gasification BIGFC/CCS systems, respectively. Steam-oxygen gasification is found to be more economically beneficial than air gasification one for all of the cases studied. Economically viable biochar co-production cases are identified to ascertain the influence of capital cost, operating cost, biomass cost, plant capacity factor, and tax. Moreover, the effect of the carbon credit scenario on the economic indicators is also reported. The results show that the most effective economic performance from the steam-oxygen gasification case reported an NPV of 3542/M,anIRRof24.23542/M, an IRR of 24.2%, and a payback period of 3.3 years, with an LCNC of -322.5/t of CO2. Compiling the results from Part I and Part II shows that it is easier to achieve negative emission using the steam-oxygen gasification of a BIGFC/CCS system. These results are expected to be helpful for stakeholders in identifying appealing negative emissions power plant projects for near and long-term future investments.Energy Technolog

    DataSheet1_Negative emission power plants: Techno-economic analysis of a biomass-based integrated gasification solid oxide fuel cell/gas turbine system for power, heat, and biochar co-production—part 2.docx

    No full text
    In our previous work (Part I), we evaluated the thermodynamic models of the biomass-fed integrated gasification solid oxide fuel cell system with a carbon capture and storage (BIGFC/CCS) unit. In this work (Part II), the techno-economic analysis of the proposed negative emission power plants is carried out. Levelized cost of electricity, net present value (NPV), payback period, internal rate of return (IRR), and levelized cost of negative carbon (LCNC) are the key economic parameters evaluated. The results of a series of sensitivity analysis show the impact of gasification agents and stepwise increase in biochar co-production on the performance of the system. The total overnight cost is estimated to be 6197 /kWand5567/kW and 5567 /kW for the air and steam-oxygen gasification BIGFC/CCS systems, respectively. Steam-oxygen gasification is found to be more economically beneficial than air gasification one for all of the cases studied. Economically viable biochar co-production cases are identified to ascertain the influence of capital cost, operating cost, biomass cost, plant capacity factor, and tax. Moreover, the effect of the carbon credit scenario on the economic indicators is also reported. The results show that the most effective economic performance from the steam-oxygen gasification case reported an NPV of 3542 M,anIRRof24.2, an IRR of 24.2%, and a payback period of 3.3 years, with an LCNC of -322.5/t of CO2. Compiling the results from Part I and Part II shows that it is easier to achieve negative emission using the steam-oxygen gasification of a BIGFC/CCS system. These results are expected to be helpful for stakeholders in identifying appealing negative emissions power plant projects for near and long-term future investments.</p
    corecore