118 research outputs found

    Multi-probe analysis of the galaxy cluster CL J1226.9+3332: Hydrostatic mass and hydrostatic-To-lensing bias

    Get PDF
    The precise estimation of the mass of galaxy clusters is a major issue for cosmology. Large galaxy cluster surveys rely on scaling laws that relate cluster observables to their masses. From the high-resolution observations of ∌45 galaxy clusters with the NIKA2 and XMM-Newton instruments, the NIKA2 Sunyaev-Zela'dovich Large Program should provide an accurate scaling relation between the thermal Sunyaev-Zela'dovich effect and the hydrostatic mass. In this paper we present an exhaustive analysis of the hydrostatic mass of the well-known galaxy cluster CL J1226.9+3332, the highest-redshift cluster in the NIKA2 Sunyaev-Zela'dovich Large Program at z=0.89. We combined the NIKA2 observations with thermal Sunyaev-Zela'dovich data from the NIKA, Bolocam, and MUSTANG instruments and XMM-Newton X-ray observations, and tested the impact of the systematic effects on the mass reconstruction. We conclude that slight differences in the shape of the mass profile can be crucial when defining the integrated mass at R500, which demonstrates the importance of the modelling in the mass determination. We prove the robustness of our hydrostatic mass estimates by showing the agreement with all the results found in the literature. Another key factor for cosmology is the bias of the masses estimated assuming the hydrostatic equilibrium hypothesis. Based on the lensing convergence maps from the Cluster Lensing And Supernova survey with Hubble (CLASH) data, we obtain the lensing mass estimate for CL J1226.9+3332. From this we are able to measure the hydrostatic-To-lensing mass bias for this cluster, which spans from 1-bHSE/lens∌0.7 to 1, presenting the impact of data sets and mass reconstruction models on the bias

    NIKA2 observations of dust grain evolution from star-forming filament to T-Tauri disk: Preliminary results from NIKA2 observations of the Taurus B211/B213 filament

    Full text link
    To understand the evolution of dust properties in molecular clouds in the course of the star formation process, we constrain the changes in the dust emissivity index from star-forming filaments to prestellar and protostellar cores to T Tauri stars. Using the NIKA2 continuum camera on the IRAM 30~m telescope, we observed the Taurus B211/B213 filament at 1.2\,mm and 2\,mm with unprecedented sensitivity and used the resulting maps to derive the dust emissivity index ÎČ\beta. Our sample of 105 objects detected in the ÎČ\beta map of the B211/B213 filament indicates that, overall, ÎČ\beta decreases from filament and prestellar cores (ÎČ∌2±0.5\beta \sim 2\pm0.5) to protostellar cores (ÎČ∌1.2±0.2\beta \sim 1.2 \pm 0.2) to T-Tauri protoplanetary disk (ÎČ<1\beta < 1). The averaged dust emissivity index ÎČ\beta across the B211/B213 filament exhibits a flat (ÎČ∌2±0.3\beta \sim 2\pm0.3) profile. This may imply that dust grain sizes are rather homogeneous in the filament, start to grow significantly in size only after the onset of the gravitational contraction/collapse of prestellar cores to protostars, reaching big sizes in T Tauri protoplanetary disks. This evolution from the parent filament to T-Tauri disks happens on a timescale of about 1-2~Myr.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    Towards the first mean pressure profile estimate with the NIKA2 Sunyaev-Zeldovich Large Program

    Full text link
    High-resolution mapping of the hot gas in galaxy clusters is a key tool for cluster-based cosmological analyses. Taking advantage of the NIKA2 millimeter camera operated at the IRAM 30-m telescope, the NIKA2 SZ Large Program seeks to get a high-resolution follow-up of 38 galaxy clusters covering a wide mass range at intermediate to high redshift. The measured SZ fluxes will be essential to calibrate the SZ scaling relation and the galaxy clusters mean pressure profile, needed for the cosmological exploitation of SZ surveys. We present in this study a method to infer a mean pressure profile from cluster observations. We have designed a pipeline encompassing the map-making and the thermodynamical properties estimates from maps. We then combine all the individual fits, propagating the uncertainties on integrated quantities, such as R500R_{500} or P500P_{500}, and the intrinsic scatter coming from the deviation to the standard self-similar model. We validate the proposed method on realistic LPSZ-like cluster simulations.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    NIKA2 observations of 3 low-mass galaxy clusters at z∌1z \sim 1: pressure profile and YSZY_{\rm SZ}-MM relation

    Full text link
    Three galaxy clusters selected from the XXL X-ray survey at high redshift and low mass (z∌1z\sim1 and M500∌1−2×1014M_{500} \sim 1-2 \times 10^{14} M⊙_{\odot}) were observed with NIKA2 to image their Sunyaev-Zel'dovich effect (SZ) signal. They all present an SZ morphology, together with the comparison with X-ray and optical data, that indicates dynamical activity related to merging events. Despite their disturbed intracluster medium, their high redshifts, and their low masses, the three clusters follow remarkably well the pressure profile and the SZ flux-mass relation expected from standard evolution. This suggests that the physics that drives cluster formation is already in place at z∌1z \sim 1 down to M500∌1014M_{500} \sim 10^{14} M⊙_{\odot}.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    IAS/CEA Evolution of Dust in Nearby Galaxies (ICED): the spatially-resolved dust properties of NGC4254

    Full text link
    We present the first preliminary results of the project \textit{ICED}, focusing on the face-on galaxy NGC4254. We use the millimetre maps observed with NIKA2 at IRAM-30m, as part of the IMEGIN Guaranteed Time Large Program, and of a wide collection of ancillary data (multi-wavelength photometry and gas phase spectral lines) that are publicly available. We derive the global and local properties of interstellar dust grains through infrared-to-radio spectral energy distribution fitting, using the hierarchical Bayesian code HerBIE, which includes the grain properties of the state-of-the-art dust model, THEMIS. Our method allows us to get the following dust parameters: dust mass, average interstellar radiation field, and fraction of small grains. Also, it is effective in retrieving the intrinsic correlations between dust parameters and interstellar medium properties. We find an evident anti-correlation between the interstellar radiation field and the fraction of small grains in the centre of NGC4254, meaning that, at strong radiation field intensities, very small amorphous carbon grains are efficiently destroyed by the ultra-violet photons coming from newly formed stars, through photo-desorption and sublimation. We observe a flattening of the anti-correlation at larger radial distances, which may be driven by the steep metallicity gradient measured in NGC4254.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    Exploring the interstellar medium of NGC 891 at millimeter wavelengths using the NIKA2 camera

    Full text link
    In the framework of the IMEGIN Large Program, we used the NIKA2 camera on the IRAM 30-m telescope to observe the edge-on galaxy NGC 891 at 1.15 mm and 2 mm and at a FWHM of 11.1" and 17.6", respectively. Multiwavelength data enriched with the new NIKA2 observations fitted by the HerBIE SED code (coupled with the THEMIS dust model) were used to constrain the physical properties of the ISM. Emission originating from the diffuse dust disk is detected at all wavelengths from mid-IR to mm, while mid-IR observations reveal warm dust emission from compact HII regions. Indications of mm excess emission have also been found in the outer parts of the galactic disk. Furthermore, our SED fitting analysis constrained the mass fraction of the small (< 15 Angstrom) dust grains. We found that small grains constitute 9.5% of the total dust mass in the galactic plane, but this fraction increases up to ~ 20% at large distances (|z| > 3 kpc) from the galactic plane.Comment: To appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    Systematic effects on the upcoming NIKA2 LPSZ scaling relation

    Get PDF
    In cluster cosmology, cluster masses are the main parameter of interest. They are needed to constrain cosmological parameters through the cluster number count. As the mass is not an observable, a scaling relation is needed to link cluster masses to the integrated Compton parameters Y, i.e. the Sunyaev-Zeldovich observable (SZ). Planck cosmological results obtained with cluster number counts are based on a scaling relation measured with clusters at low redshift (z<0.5) observed in SZ and X-ray. In the SZ Large Program (LPSZ) of the NIKA2 collaboration, the scaling relation will be obtained with a sample of 38 clusters at intermediate to high redshift (0.5 < z < 0.9) and observed at high angular resolution in both SZ and X-ray. Thanks to analytical simulation of LPSZ-like samples, we take into account the LPSZ selection function and correct for its effects. Besides, we show that white and correlated noises in the SZ maps do not affect the scaling relation estimation

    NIKA2 observations of starless cores in Taurus and Perseus

    Get PDF
    Dusty starless cores play an important role in regulating the initial phases of the formation of stars and planets. In their interiors, dust grains coagulate and ice mantles form, thereby changing the millimeter emissivities and hence the ability to cool. We mapped four regions with more than a dozen cores in the nearby Galactic filaments of Taurus and Perseus using the NIKA2 camera at the IRAM 30-meter telescope. Combining the 1mm to 2mm flux ratio maps with dust temperature maps from Herschel allowed to create maps of the dust emissivity index ÎČ1,2 at resolutions of 2430 and 5600 a.u. in Taurus and Perseus, respectively. Here, we study the variation with total column densities and environment. ÎČ1,2 values at the core centers (Av =12 – 19 mag) vary significantly between ~ 1.1 and 2.3. Several cores show a strong rise of ÎČ1,2 from the outskirts at ~ 4 mag to the peaks of optical extinctions, consistent with the predictions of grain models and the gradual build-up of ice mantles on coagulated grains in the dense interiors of starless cores

    Stellar and dust emission profiles of IMEGIN galaxies

    Get PDF
    We present a morphological analysis of a set of spiral galaxies from the NIKA2 Guaranteed Time Large Program, IMEGIN. We have fitted a single SĂ©rsic model on a set of broadband images, from ultra-violet (UV) to millimeter (mm) wavelengths, using the modelling code Statmorph. With the recently acquired NIKA2 1.15- and 2-mm observations, it is possible to extend such a morphological analysis to the mm regime and investigate the two-dimensional (2D) distribution (exponential, Gaussian) of the very cold dust (<15 K). We show preliminary results of the 2D large-scale distribution of stars and dust in spiral galaxies, how they relate to each other, and highlight how they differ from galaxy to galaxy
    • 

    corecore