85 research outputs found

    Erratum: A decadal decline in relative abundance and a shift in microphytoplankton composition at a long-term coastal station off southeast Australia

    Full text link
    In this study, we examined 11 yr (1998-2009) of water samples collected from Port Hacking coastal monitoring station 8 km offshore from Sydney, Australia, to assess changes in the microphytoplankton in relation to climate-related trends in environmental variables. A total of 152 taxa (85 genera) were identified, with the small diatom Thalassiosira cf. partheneia and the tropical cyanobacterium Trichodesmium erythraeum being the dominant species over the past decade. Taxon richness showed a distinct seasonal pattern, peaking in the austral winter. Ordination analyses revealed significant seasonal and interannual trends in species composition, including a decadal decline in dinoflagellates relative to diatoms toward the present. This decadal shift in taxonomic composition was, in turn, significantly associated with declines in water temperatures over this time period. Total abundance varied by 12 orders of magnitude (8.5 X 10⁻⁞ to 7.4 X 10⁎ cells L⁻Âč), with values separable into bloom and nonbloom regimes at an abundance threshold of 7.1 X 10⁻⁔ cells L⁻Âč. Significant temporal declines in abundance were observed during both bloom and nonbloom regimes. Blooms occurred most consistently in March, September, and December.13 page(s

    Phytoplankton realized Niches Track changing oceanic conditions at a long-term coastal station offSydney Australia

    Full text link
    © 2018 Ajani, McGinty, Finkel and Irwin. Phytoplankton dynamics are closely linked to the ocean-climate system with evidence that changing ocean conditions are substantially altering phytoplankton biogeography, abundance and phenology. Using phytoplankton community composition and environmental data spanning 1965 to 2013 from a long-term Pacific Ocean coastal station offshore from Sydney, Australia (Port Hacking 100 m), we used the Maximum Entropy Modelling framework (MaxEnt) to test whether phytoplankton realized niches are fixed or shift in response to changing environmental conditions. The mean niches of phytoplankton closely tracked changes in mean temperature, while the mean salinity and mixed layer depth realized niches were consistently at the extreme range of available conditions. Prior studies had shown a fixed niche for nitrate in some phytoplankton species at a site where nitrate concentration was decreasing and potentially limiting; however, at Port Hacking nitrate and silicate niches increased more rapidly than environmental conditions, apparently in response to periodic occurrences of elevated nutrient concentrations. This study provides further evidence that climate change model projections cannot assume fixed realized niches of biotic communities, whilst highlighting the importance of sustained ocean measurements from the southern hemisphere to enhance our understanding of global ocean trends

    A new diatom species P. Hallegraeffii sp. Nov. Belonging to the toxic genus Pseudo-nitzschia (Bacillariophyceae) from the East Australian Current

    Full text link
    © 2018 Ajani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. A new species belonging to the toxin producing diatom genus Pseudo-nitzschia, P. hallegraeffii sp. nov., is delineated and described from the East Australian Current (EAC). Clonal cultures were established by single cell isolation from phytoplankton net hauls collected as part of a research expedition in the EAC region in 2016 on the RV Investigator. Cultures were assessed for their morphological and genetic characteristics, their sexual compatibility with other Pseudo-nitzschia species, and their ability to produce domoic acid. Light and transmission electron microscopy revealed cells which differed from their closest relatives by their cell width, rows of poroids, girdle band structure and density of band straie. Phylogenetic analyses based on sequencing of nuclear-encoded ribosomal deoxyribonucleic acid (rDNA) regions showed this novel genotype clustered within the P. delicatissima complex, but formed a discrete clade from its closest relatives P. dolorosa, P. simulans, P. micropora and P. delicatissima. Complementary base changes (CBCs) were observed in the secondary structure of the 3’ nuclear ribosomal transcribed spacer sequence region (ITS2) between P. hallegraeffii sp. nov. and its closest related taxa, P. simulans and P. dolorosa. Under laboratory conditions, and in the absence of any zooplankton cues, strains of P. hallegraeffii sp. nov. did not produce domoic acid (DA) and were not sexually compatible with any other Pseudo-nitzschia clones tested. A total of 18 Pseudo-nitzschia species, including three confirmed toxigenic species (P. cuspidata, P. multistriata and P. australis) have now been unequivocally confirmed from eastern Australia

    The microbiome of the cosmopolitan diatom leptocylindrus reveals significant spatial and temporal variability

    Get PDF
    Copyright © 2018 Ajani, Kahlke, Siboni, Carney, Murray and Seymour. The ecological interactions between phytoplankton and marine bacteria have important implications for the productivity and biogeochemistry of ocean ecosystems. In this study we characterized the microbial assemblages associated with multiple isolates of the ecologically important diatom Leptocylindrus using amplicon sequencing of the 16S rRNA gene, to examine levels of conservation of the microbiome across closely related species or strains. We also assessed if the microbiome structure of a given diatom strain was dependent on the location from which it was isolated and if the microbiome of cultured isolates significantly changed overtime from the seawater in which they were isolated. The bacterial assemblages from 36 strains belonging to three species (Leptocylindrus danicus, Leptocylindrus convexus, and Leptocylindrus aporus) isolated from six locations spanning > 1000 km of south east Australian coastline over 1 year, were dominated by the Rhodobacteraceae (∌60%) and the Flavobacteriaceae (∌10%). Across all strains, only one 'core OTU' (Roseovarius sp.) was identified across all samples. We observed no significant differences in bacterial community composition between diatom species. Significant differences in microbiome structure were, however, observed between diatom strains collected at different sampling times and from differing locations, albeit these two factors were coupled. Moreover, while bacterial communities under domestication varied from the seawater in which they were isolated, they remained specific to the location/month of origin, i.e., different regions and time points harbored distinct bacterial communities. Our study delivers new knowledge in relation to diatom-bacterial associations, revealing that the location/time from which a diatom is isolated plays an important role in shaping its microbiome

    Impact of fluorescence on Raman remote sensing of temperature in natural water samples

    Full text link
    © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement A comprehensive investigation into the impact of spectral baseline on temperature prediction in natural marine water samples by Raman spectroscopy is presented. The origin of baseline signals is investigated using principal component analysis and phytoplankton cultures in laboratory experiments. Results indicate that fluorescence from photosynthetic pigments and dissolved organic matter may overlap with the Raman peak for 532 nm excitation and compromise the accuracy of temperature predictions. Two methods of spectral baseline correction in natural waters are evaluated: a traditional tilted baseline correction and a new correction by temperature marker values, with accuracies as high as ± 0.2°C being achieved in both cases

    Bloom drivers of the potentially harmful dinoflagellate Prorocentrum minimum (Pavillard) Schiller in a south eastern temperate Australian estuary

    Full text link
    © 2018 Elsevier Ltd Harmful algal blooms are an increasing concern in the estuarine reaches of the Hawkesbury-Nepean River, one of the largest coastal rivers systems in south eastern Australia. In the austral spring of 2016, an unprecedented bloom of the harmful mixotrophic dinoflagellate Prorocentrum minimum occurred in Berowra Creek (maximum cell abundance 1.9E+06 cells L−1, 89% of the total phytoplankton community), a major tributary of this river system. In response to this bloom, our study utilises an estuary-wide, thirteen-year time series of phytoplankton abundance and environmental data to examine the spatial and temporal patterns of this harmful alga and its potential bloom drivers in this system. P. minimum cell densities and environmental parameters varied over large spatial scales, with sites located in the main channel of the estuary significantly differing from those in the more urbanized tributary of Berowra Creek. Generalised additive modelling outputs suggested that blooms of P. minimum are complex, but generally corresponded to a spatial gradient of eutrophication and salinity, whereby P. minimum growth and concomitant high chlorophyll-a concentrations were enhanced at sites that were generally less saline and more eutrophic than others. Furthermore, temporal patterns suggested that blooms occurred abruptly and lasted up to three weeks, most often during the austral autumn to spring. While significant correlations were observed between rainfall and nutrients at all other sites, suggesting a pathway for nutrient availability, the association between rainfall and nutrient delivery was generally not observed in Berowra Creek (a 15-m deep site) suggesting that a continual supply of nutrients, coupled with unique bathymetry and water residence time at this site, are the most likely contributing factors to phytoplankton growth. This study presents the most comprehensive examination of P. minimum in any southern hemisphere estuary to date and highlights the importance of continued monitoring of HABs and the important role that anthropogenic inputs have in driving blooms of P. minimum in this oyster-growing river/estuary system

    A Comparative Analysis of Methods (LC-MS/MS, LC-MS and Rapid Test Kits) for the Determination of Diarrhetic Shellfish Toxins in Oysters, Mussels and Pipis

    Get PDF
    Rapid methods for the detection of biotoxins in shellfish can assist the seafood industry and safeguard public health. Diarrhetic Shellfish Toxins (DSTs) are produced by species of the dinoflagellate genus Dinophysis, yet the comparative efficacy of their detection methods has not been systematically determined. Here, we examined DSTs in spiked and naturally contaminated shellfish–Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS and LC-MS in 4 laboratories, and 5 rapid test kits (quantitative Enzyme-Linked Immunosorbent Assay (ELISA) and Protein Phosphatase Inhibition Assay (PP2A), and qualitative Lateral Flow Assay (LFA)). We found all toxins in all species could be recovered by all laboratories using LC-MS/MS (Liquid Chromatography—tandem Mass Spectrometry) and LC-MS (Liquid Chromatography—Mass Spectrometry); however, DST recovery at low and mid-level concentrations (0.86 mg/kg) was higher (60–262%). While no clear differences were observed between shellfish, all kits delivered an unacceptably high level (25–100%) of falsely compliant results for spiked samples. The LFA and the PP2A kits performed satisfactorily for naturally contaminated pipis (0%, 5% falsely compliant, respectively). There were correlations between spiked DSTs and quantitative methods was highest for LC-MS (r2 = 0.86) and the PP2A kit (r2 = 0.72). Overall, our results do not support the use of any DST rapid test kit as a stand-alone quality assurance measure at this tim

    The Influence of Dissolved Organic Carbon on the Microbial Community Associated with Tetraselmis striata for Bio-Diesel Production

    Full text link
    The green alga Tetraselmis striata is regarded as a suitable candidate microalga for bio-diesel production. Recently, T. striata was cultured near Yeonghueung Island, Korea, in a “marine culturing field”; however, its environmental impacts are not yet studied. We estimated the amount of dissolved organic carbon (DOC) released from T. striata cultivation in the marine culturing field, and we investigated the changes in bacterial composition. Then, we designed and installed a mesocosm for further understanding. From the mesocosm results, the DOC released from the cultivation of T. striata led to changes in bacterial communities, disturbance of the microbial food web structure, rapid depletion of nutrients, and a decrease in dissolved oxygen (DO) and pH. Our novel work demonstrates that large amounts of DOC secreted by large-scale microalgal cultures such as that of T. striata can potentially have a significant impact on the structure and function of the surrounding microbial ecosystem.</jats:p
    • 

    corecore