130 research outputs found

    Respiration rate and volume measurements using wearable strain sensors.

    Get PDF
    Current methods for continuous respiration monitoring such as respiratory inductive or optoelectronic plethysmography are limited to clinical or research settings; most wearable systems reported only measures respiration rate. Here we introduce a wearable sensor capable of simultaneously measuring both respiration rate and volume with high fidelity. Our disposable respiration sensor with a Band-Aid© like formfactor can measure both respiration rate and volume by simply measuring the local strain of the ribcage and abdomen during breathing. We demonstrate that both metrics are highly correlated to measurements from a medical grade continuous spirometer on participants at rest. Additionally, we also show that the system is capable of detecting respiration under various ambulatory conditions. Because these low-powered piezo-resistive sensors can be integrated with wireless Bluetooth units, they can be useful in monitoring patients with chronic respiratory diseases in everyday settings

    Four Months of a School-Based Exercise Program Improved Aerobic Fitness and Clinical Outcomes in a Low-SES Population of Normal Weight and Overweight/Obese Children With Asthma

    Get PDF
    Introduction: Fitness can improve asthma management. However, children from disadvantaged and minority communities generally engage less in physical activity, and have increased obesity and asthma disease burden. The goal of this pilot study is to evaluate (1) the feasibility of an exercise intervention program in a school-based setting (attendance and fitness improvement) and (2) the effect of the intervention on fitness, asthma, and clinical outcomes in normal weight and overweight/obese children with asthma from low-SES population.Materials and Methods: Nineteen children, ages 6–13 years, from two elementary schools in Santa Ana, CA, a population with high percentage of Hispanic and low socioeconomic status, participated. Training sessions occurred at the schools during afterschool hours (3 sessions weekly × 4 months) and included mainly aerobic age-appropriate activities/games and a small component of muscle strength. Before and after the intervention, evaluations included pulmonary function testing, cardiopulmonary exercise testing (peak V˙O2), assessments of habitual physical activity, body composition (DXA), asthma questionnaires, and blood (cardiometabolic risk factors).Results: Seventeen of 19 participants completed the study. Adherence to the program was 85%. Based on BMI %ile, 11 of the participants were overweight/obese and 8 were normal weight. Ten participants had persistent asthma and 9 children had intermittent asthma. Training was effective as peak V˙O2 improved significantly (8.1%, SD ± 10.1). There was no significant change in BMI %ile but a significant improvement in lean body mass (1%, SD ± 2.0) and decrease in body fat (1.9%, SD ± 4.6). Asthma quality of life outcomes improved following the intervention in symptoms, emotional function, and overall. There was no change in asthma control or pulmonary function. Five of 10 participants with persistent asthma decreased their maintenance medications. Lipid levels did not change except HDL levels increased (46.1 ± 8.4 mg/dL to 49.5 ± 10.4 mg/dL, p = 0.04).Discussion: A school-based exercise intervention program designed specifically for children with asthma for a predominantly economically disadvantaged and minority population was feasible with good adherence to the program and substantial engagement from the schools, families and participants. The exercise intervention was effective with improvement in aerobic fitness, body composition, asthma quality of life, and lipid outcomes, setting the stage for a larger multicenter trial designed to study exercise as an adjunct medicine in children with asthma

    Leukocytes and lactate responses to cycling and running at the same target heart rate

    Get PDF
    Heart Rate (HR) is widely used for erobic exercise intensity prescriptions and/or studies of exercise training. It is often assumed that exercising at a given HR results in similar physiological response, regardless of exercise modality. This study aimed to gauge cellular immune mobilization to submaximal exercise at a given target HR on a cycle ergometer (CE) and treadmill (TM). Thirteen healthy male adults (23.2 ± 3.5 y.o) completed 4 laboratory visits. Participants performed two graded exercise tests to exhaustion on CE and TM and two 30‐min constant exercise challenges at 70% HR reserve on CE or TM in random order. Rating of Perceived Exertion (RPE) was recorded every 5 min, and blood was drawn before and after exercise to measure leukocytes subpopulation levels, lactate, and IL‐6. HR was successfully “clamped” during the exercise in CE and TM (CE 156.7 ± 1.1; TM 159.3 ± 1.6 bpm). Cycling was perceived as more strenuous than running and was accompanied by a greater increase in lactate post‐exercise (p < 0.0001; 6.2 ± 0.3 vs. 2.9 ± 0.3 mmol/L). IL‐6 and leukocytes subpopulations were significantly elevated post‐exercise (p < 0.003) with no difference between exercise modalities (mono-cytes; CE 57.6% TM 61.2%, granulocytes; CE 41.37%, TM 50.1%, lymphocytes; CE 91.03%, TM 78.8%). The findings revealed that HR is not sufficient in and of itself to fully assess the metabolic stress associated with a given exercise modality. How-ever, despite different metabolic and subjective stress, the IL‐6 and leukocyte counts relative changes were similar in the two modalities

    Glucocorticoid receptor expression on circulating leukocytes differs between healthy male and female adults

    Get PDF
    IntroductionThe glucocorticoid receptor (GR) is a key receptor involved in inflammatory responses and is influenced by sex steroids. This study measured GR expression on circulating leukocyte subtypes in males and females.MethodsA total of 23 healthy adults (12 female) participated in this study. GR expression was measured in leukocyte subtypes using flow cytometry. Peripheral blood mononuclear cell (PBMC) gene expression of GR (NR3C1), GR ÎČ, TGF-ÎČ1 and 2, and glucocorticoid-induced leucine zipper (GILZ) were determined by real-time polymerase chain reaction.ResultsLeukocyte GR was lower in females, particularly in granulocytes, natural killer cells, and peripheral blood mononuclear cells (p≀0.01). GR protein expression was different across leukocyte subtypes, with higher expression in eosinophils compared with granulocytes, T lymphocytes, and natural killer cells (p&lt;0.05). There was higher gene expression of GR ÎČ in males (p=0.03).ConclusionsThis is the first study to identify sexual dimorphism in GR expression in healthy adults using flow cytometry. These results may begin to explain the sexual dimorphism seen in many diseases and sex differences in glucocorticoid responsiveness

    The Clinical Translation Gap in Child Health Exercise Research: A Call for Disruptive Innovation: ThePediatricExerciseNetwork-WorkingGroup

    Get PDF
    In children, levels of play, physical activity, and fitness are key indicators of health and disease and closely tied to optimal growth and development. Cardiopulmonary exercise testing (CPET) provides clinicians with biomarkers of disease and effectiveness of therapy, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response that is hidden when the child is at rest. Yet the growth of clinical trials utilizing CPET in pediatrics remains stunted despite the current emphasis on preventative medicine and the growing recognition that therapies used in children should be clinically tested in children. There exists a translational gap between basic discovery and clinical application in this essential component of child health. To address this gap, the NIH provided funding through the Clinical and Translational Science Award (CTSA) program to convene a panel of experts. This report summarizes our major findings and outlines next steps necessary to enhance child health exercise medicine translational research. We present specific plans to bolster data interoperability, improve child health CPET reference values, stimulate formal training in exercise medicine for child health care professionals, and outline innovative approaches through which exercise medicine can become more accessible and advance therapeutics across the broad spectrum of child health
    • 

    corecore