10 research outputs found

    Baichuan 2: Open Large-scale Language Models

    Full text link
    Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.Comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan

    Artificial intelligence in colposcopic examination: A promising tool to assist junior colposcopists

    Get PDF
    IntroductionWell-trained colposcopists are in huge shortage worldwide, especially in low-resource areas. Here, we aimed to evaluate the Colposcopic Artificial Intelligence Auxiliary Diagnostic System (CAIADS) to detect abnormalities based on digital colposcopy images, especially focusing on its role in assisting junior colposcopist to correctly identify the lesion areas where biopsy should be performed.Materials and methodsThis is a hospital-based retrospective study, which recruited the women who visited colposcopy clinics between September 2021 to January 2022. A total of 366 of 1,146 women with complete medical information recorded by a senior colposcopist and valid histology results were included. Anonymized colposcopy images were reviewed by CAIADS and a junior colposcopist separately, and the junior colposcopist reviewed the colposcopy images with CAIADS results (named CAIADS-Junior). The diagnostic accuracy and biopsy efficiency of CAIADS and CAIADS-Junior were assessed in detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+), CIN3+, and cancer in comparison with the senior and junior colposcipists. The factors influencing the accuracy of CAIADS were explored.ResultsFor CIN2 + and CIN3 + detection, CAIADS showed a sensitivity at ~80%, which was not significantly lower than the sensitivity achieved by the senior colposcopist (for CIN2 +: 80.6 vs. 91.3%, p = 0.061 and for CIN3 +: 80.0 vs. 90.0%, p = 0.189). The sensitivity of the junior colposcopist was increased significantly with the assistance of CAIADS (for CIN2 +: 95.1 vs. 79.6%, p = 0.002 and for CIN3 +: 97.1 vs. 85.7%, p = 0.039) and was comparable to those of the senior colposcopists (for CIN2 +: 95.1 vs. 91.3%, p = 0.388 and for CIN3 +: 97.1 vs. 90.0%, p = 0.125). In detecting cervical cancer, CAIADS achieved the highest sensitivity at 100%. For all endpoints, CAIADS showed the highest specificity (55–64%) and positive predictive values compared to both senior and junior colposcopists. When CIN grades became higher, the average biopsy numbers decreased for the subspecialists and CAIADS required a minimum number of biopsies to detect per case (2.2–2.6 cut-points). Meanwhile, the biopsy sensitivity of the junior colposcopist was the lowest, but the CAIADS-assisted junior colposcopist achieved a higher biopsy sensitivity.ConclusionColposcopic Artificial Intelligence Auxiliary Diagnostic System could assist junior colposcopists to improve diagnostic accuracy and biopsy efficiency, which might be a promising solution to improve the quality of cervical cancer screening in low-resource settings

    The First Ka-band (26.1–35 GHz) Blind Line Survey toward Orion KL

    No full text
    We conducted a Ka -band (26.1–35 GHz) line survey toward Orion KL using the TianMa 65 m Radio Telescope (TMRT). It is the first blind line survey in the Ka band and achieves a sensitivity at the mK level (1–3 mK at a spectral resolution of ∼1 km s ^−1 ). In total, 592 Gaussian features are extracted. Among them, 257 radio recombination lines (RRLs) are identified. The maximum Δ n of RRLs of H, He, and C are 20, 15, and 5, respectively. Through stacking, we have detected the β lines of ion RRLs (RRLs of C ^+ with the possible contribution of other ions like O ^+ ) for the first time, and a tentative signal of the γ lines of ion RRLs can also be seen on the stacked spectrum. Besides this, 318 other line features were assigned to 37 molecular species, and 10 of these species were not detected in the Q -band survey of TMRT. The vibrationally excited states of nine species were also detected. The emission of most species can be modeled under LTE. A number of transitions of E-CH3OH ( J _2 − J _1 ) display maser effects, which are confirmed by our modeling, and besides the bumping peak at J ∼ 6, there is another peak at J ∼ 13. Methylcyanoacetylene (CH _3 C _3 N) is detected in Orion KL for the first time. This work emphasizes that the Ka band, which was long ignored for spectral line surveys, is very useful for surveying RRLs and molecular lines simultaneously
    corecore