10 research outputs found

    Three-dimensional imaging and quantification of mouse ovarian follicles via optical coherence tomography

    Get PDF
    Ovarian tissue cryopreservation has been successfully applied worldwide for fertility preservation. Correctly selecting the ovarian tissue with high follicle loading for freezing and reimplantation increases the likelihood of restoring ovarian function, but it is a challenging process. In this work, we explore the use of three-dimensional spectral-domain optical coherence tomography (SD-OCT) to identify different follicular stages, compare the identifications with H&E images, and measure the size and age-related follicular density distribution differences in mice ovaries. We use the thickness of the layers of granulosa cells to differentiate primordial and primary follicles from secondary follicles. The measured dimensions and age-related follicular distribution agree well with histological images and physiological aging. Finally, we apply attenuation coefficient map analyses to significantly improve the image contrast and the contrast-to-noise ratio (p \u3c 0.001), facilitating follicle identification and quantification. We conclude that SD-OCT is a promising method to noninvasively evaluate ovarian follicles for ovarian tissue cryopreservation

    Effect of nano-C doping on the in-situ processed MgB2 tapes

    Full text link
    The effect of nano-C doping on the microstructure and superconducting properties of Fe-sheathed MgB2 tapes prepared through the in-situ powder-in-tube method was studied. Heat treatment was performed at a low temperature of 650C for 1 h. Scanning electron microscopy investigation revealed that the smaller grain size of MgB2 in the samples with the C-doping. Further, the a-axis lattice parameter and transition temperature decreased monotonically with increasing doping level, which is due to the C substitution for B. High critical current density Jc values in magnetic fields were achieved in the doped samples because of the very fine-grained microstructure of the superconducting phase obtained with C doping.Comment: revised manuscript, 4 pages, 4 figures. to be published soo

    The water lily genome and the early evolution of flowering plants

    Get PDF
    Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1–3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.Supplementary Tables: This file contains Supplementary Tables 1-21.National Natural Science Foundation of China, the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW201909) and State Key Laboratory of Tree Genetics and Breeding, the Fujian provincial government in China, the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement and the Special Research Fund of Ghent University.http://www.nature.com/naturecommunicationsam2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses

    No full text
    Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research

    Status and factors influencing on-farm conservation of Kam Sweet Rice (Oryza sativa L.) genetic resources in southeast Guizhou Province, China

    No full text
    Abstract Background Kam Sweet Rice (KSR) is a special kind of rice landrace that has been cultivated for thousands of years in the borders of Guizhou, Hunan, and Guangxi Provinces of China, and is mainly distributed in southeast Guizhou Province of China currently. KSR has many unique qualities, including strong resistance to diseases, pests, and adverse abiotic conditions, difficulty of threshing, and well glutinous features. KSR germplasm resources are an indispensable material and cultural symbol in the production and daily life and customs of the Dong people. Related studies showed that numerous traditional KSR varieties and cultivation area of KSR decreased sharply from the Qing dynasty to 2015, but many KSR varieties are still conserved in Dong villages of southeast Guizhou Province compared to other areas. However, the number of KSR varieties that are conserved on farms in southeast Guizhou Province and factors influencing the erosion and conservation of KSR genetic resources is unclear. Therefore, this study was an on-farm conservation investigation of KSR genetic resource in China’s major KSR producing areas—Liping, Congjiang, and Rongjiang counties in Guizhou Province and influencing factors analysis of KSR abandonment and conservation. Methods The information of KSR conservation status and variety characteristics, typical villages, Dong’s cultural customs, and factors influencing KSR abandonment and conservation was obtained using ethno-biology methods, mainly through field research interviews, including participatory observation, semi-structured interviews, key informant interviews, focus group discussions, and cultural anthropology. The altitude, plant height, awn color and length, hull color, and rice color of 156 KSR accessions in 28 villages were recorded. The variety quantity and cultivation area of KSR were investigated in 33 ethnic villages. Questionnaire surveys were conducted in typical Dong villages to obtain local farmers’ attitudes toward cultivation and protection of KSR. We randomly selected 26 farmers from Sizhai village and 30 farmers from Huanggang village and chose 3 social characteristics including age, gender, and education levels of farmers, and adopted the method of face-to-face interviewing to complete the questionnaires. Then, we analyzed the correlation and determined the significance between farmers with different social characteristics and farmers’ attitudes to KSR development and protection using SPSS 17.0 software. Results (1) On-farm conservation status of KSR: a total of 156 KSR varieties were collected from 28 ethnic minority villages from 13 townships (accounting for 21% of three counties) in Liping, Congjiang, and Rongjiang counties. KSR accessions accounted for more than 90% of local rice varieties in each village. According to local farmers, although the quantity of KSR varieties decreased more than 50% in the investigated villages compared to the past 10–20 years, some Dong villages have still cultivated KSR, accounting for more than 50% of the rice field area in 10 villages. This result showed that many KSR varieties are still conserved by in Dong villages, and these KSR varieties have a high genetic diversity of phenotypes. (2) Typical villages investigation: the cultivation area of KSR in Congjiang was the highest, 6.7 times larger than Liping and eight times larger than Rongjiang. In addition, the cultivation area of KSR in Dong villages was larger than that in other ethnic villages, and villages that had a higher planting area of KSR had more KSR accessions. (3) Farmers’ attitude toward the development and conservation of KSR: Dong farmers hold the negative attitudes concerning the development of KSR resources, but they thought it is necessary to protect KSR landraces. Especially, a high level of education and female, young, and old farmers played more important roles in the cultivation and protection of KSR. Conclusions Until now, some Dong ethnic villages have still cultivated KSR for thousands of years in Qiandongnan area, although the number of varieties and the planting area of KSR have been greatly reduced. In addition, ethnic traditional culture and social customs were the main influencing factors of KSR conservation; economic, management, and policy factors were the main influencing factors of KSR abandonment. Through the analysis of the correlation between farmers with different social characteristics and their attitudes toward the cultivation, reasons for conservation and abandonment, development tendency, and protection of KSR, we found that a high level of education and female, young, and old farmers play more important role in the cultivation and protection of KSR. Therefore, in order to promote the protection and sustainable utilization of KSR, it is necessary to build on-farm conservation of KSR and improve the position of female farmers and the education level of young people, and encourage the old people to educate the middle-aged to conserve and protect KSR as well as Dong’s traditional culture and social customs. This study is of great significance to promote better protection and optimal utilization of KSR and enable the public, government, and related researchers pay more attention to conserving ethnic traditional cultures

    Effects of Traditional Ethnic Minority Food Culture on Genetic Diversity in Rice Landraces in Guizhou Province, China

    No full text
    Ethnic minorities living in Guizhou Province, China, have produced numerous rice landraces that are rich in genetic variations. Studying the genetic diversity and population structure of rice landraces in Guizhou has therefore become a topic of great research interest. However, the influence of ethnic minorities and their traditional food cultures on rice landraces remains unclear. We analyzed the genetic diversity of 598 rice landraces using simple sequence repeat (SSR) markers. Furthermore, we analyzed the nucleotide variations between two similar populations collected during two different time periods using a single-nucleotide polymorphism (SNP) haplotype analysis of six unlinked nuclear loci. The three major results were as follows: (1) The genetic diversity index of rice landraces in six ecologically distinct rice farming zones of Guizhou Province was high (He = 0.7721), and Southwest Guizhou, which has a large population of ethnic minorities, is the center of genetic diversity of rice landraces in the province; this region had the highest He at 0.7823 and the highest polymorphic information content (PIC) at 0.7562. (2) A neighbor-joining (NJ) phylogenetic tree and a model of the population structure showed that the rice landraces from the southwest, south, and southeast of Guizhou had unique genetic structures and genetic backgrounds, which are closely related to the traditional diet cultures of the local ethnic minorities. (3) A nucleotide variation analysis of similar rice landraces collected in 1980 and 2015 revealed that, after 35 years of domestication by ethnic minorities, the original dominant haplotypes were well-preserved; the frequency of the most favorable haplotypes gradually increased to adapt to the traditional food culture. This study is expected to promote the protection and sustainable utilization of rice landraces from this unique region and to provide valuable germplasm materials and information for future rice breeding and basic research efforts

    The water lily genome and the early evolution of flowering plants

    No full text
    Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1,2,3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms

    The water lily genome and the early evolution of flowering plants

    Get PDF
    Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms
    corecore