24 research outputs found

    Investigation on Photovoltaic Performance based on Matchstick-Like Cu2S–In2S3Heterostructure Nanocrystals and Polymer

    Get PDF
    In this paper, we synthesized a novel type II cuprous sulfide (Cu2S)–indium sulfide (In2S3) heterostructure nanocrystals with matchstick-like morphology in pure dodecanethiol. The photovoltaic properties of the heterostructure nanocrystals were investigated based on the blends of the nanocrystals and poly(2-methoxy-5-(2′-ethylhexoxy)-p-phenylenevinylene) (MEH-PPV). In comparison with the photovoltaic properties of the blends of Cu2S or In2S3nanocrystals alone and MEH-PPV, the power conversion efficiency of the hybrid device based on blend of Cu2S–In2S3and MEH-PPV is enhanced by ~3–5 times. This improvement is consistent with the improved exciton dissociation or separation and better charge transport abilities in type II heterostructure nanocrystals

    Effect of ZnCdTe-Alloyed Nanocrystals on Polymer–Fullerene Bulk Heterojunction Solar Cells

    Get PDF
    The photovoltaic properties of solar cell based on the blends of poly[2-methoxy-5-(2-ethylhexoxy-1,4-phenylenevinylene) (MEH-PPV), fullerene (C60), and ZnCdTe-alloyed nanocrystals were investigated. Comparing the spectral response of photocurrent of the MEH-PPV:C60(+ZnCdTe) nanocomposite device with that of the devices based on MEH-PPV:C60and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. In comparing the composite devices with different ZnCdTe:[MEH-PPV + C60] weight ratios of 10 wt% (D1–1), 20 wt% (D1–2), 40 wt% (D1–3), and 70 wt% (D1–4), it was found that the device D1–3exhibits the best performance. The power conversion efficiency (η) is improved doubly compared with that of the MEH-PPV:C60device

    The Anti-atherosclerotic Effect of Paeonol against Vascular Smooth Muscle Cell Proliferation by Up-regulation of Autophagy via the AMPK/mTOR Signaling Pathway

    No full text
    Introduction: Paeonol (2′-hydroxy-4′-methoxyacetophenone), isolated from moutan cortex, is an active component and has been shown to have anti-atherosclerotic and anti-proliferation effects on vascular smooth muscle cells (VSMCs). However, the possible role of Paeonol in protecting against VSMC proliferation as related to autophagy has yet to be elucidated.Materials and Methods: The athero-protective effects of Paeonol were evaluated in apoE-/- mice. The effects of Paeonol on VSMC proliferation and autophagy were examined by staining α-SMA and LC3II spots in the media layer of apoE-/- mice, respectively. CCK8 and BrdU assays were used to investigate the effects of Paeonol on cell proliferation in vitro. The autophagic levels in VSMCs were evaluated by detecting LC3II accumulation and p62 degradation by immunoblot analysis. To investigate if Paeonol could prevent VSMCs proliferation through autophagy induction, we tested the change in autophagy and cell proliferation by inhibition of autophagy. The levels of the AMPK/mTOR pathway in autophagy regulation were detected by immunoblot analysis. An AMPK inhibitor and si-AMPK transfection in VSMCs was used to confirm whether AMPK activity plays a key role in autophagy regulation of Paeonol.Results:In vivo experiments confirmed that Paeonol restricted atherosclerosis development and decreased the amount of VSMCs in the media layer of apoE-/- mice. Paeonol increased protein levels of LC3II and the presence of autophagosomes in the media layer of arteries, which implies that Paeonol may induce VSMCs autophagy in vivo. Paeonol showed potential in inhibiting ox-LDL-induced proliferation in vitro experiments. Paeonol dose-dependently enhanced the formation of acidic vesicular organelles and autophagosmomes, up-regulated the expression of LC3II and increased p62 degradation. The autophagy inhibitor CQ obviously attenuated Paeonol-induced autophagy and the anti-proliferation effect in VSMCs. In addition, Paeonol induced phosphorylation of AMPK and reduced phosphorylation of mTOR. An AMPK inhibitor reversed the Paeonol-induced p-mTOR/mTOR decrease. Paeonol induced LC3II conversion, increased p62 degradation and inhibited cell proliferation in VSMCs, the effects of which were abolished by si-AMPK.Conclusion: These results imply that Paeonol inhibits proliferation of VSMCs by up-regulating autophagy, and activating the AMPK/mTOR signaling pathway, providing new insights into the anti-atherosclerosis activity of Paeonol

    Multi-omics analyses reveal that the gut microbiome and its metabolites promote milk fat synthesis in Zhongdian yak cows

    No full text
    Background Yak cows produce higher quality milk with higher concentrations of milk fat than dairy cows. Recently, studies have found the yak milk yield and milk fat percentage have decreased significantly over the past decade, highlighting the urgency for yak milk improvement. Therefore, we aimed to analyze how the gut microbiome impacts milk fat synthesis in Zhongdian yak cows. Methods We collected milk samples from Zhongdian yak cows and analyzed the milk fat percentage, selecting five Zhongdian yak cows with a very high milk fat percentage (>7%, 8.70 ± 1.89%, H group) and five Zhongdian yak cows with a very low milk fat percentage (<5%, 4.12 ± 0.43%, L group), and then obtained gut samples of these ten Zhongdian yak cows through rectal palpation. Gut metagenomics, metabolomics, and conjoint metagenomics and metabolomics analyses were performed on these samples, identifying taxonomic changes, functional changes, and changes in gut microbes-metabolite interactions within the milk fat synthesis-associated Zhongdian yak cows gut microbiome, to identify potential regulatory mechanisms of milk fat at the gut microbiome level in Zhongdian yak cows. Results The metagenomics analysis revealed Firmicutes and Proteobacteria were significantly more abundant in the gut of the high-milk fat Zhongdian yak cows. These bacteria are involved in the biosynthesis of unsaturated fatty acids and amino acids, leading to greater efficiency in converting energy to milk fat. The metabolomics analysis showed that the elevated gut metabolites in high milk fat percentage Zhongdian yak cows were mainly enriched in lipid and amino acid metabolism. Using a combined metagenomic and metabolomics analysis, positive correlations between Firmicutes (Desulfocucumis, Anaerotignum, Dolosiccus) and myristic acid, and Proteobacteria (Catenovulum, Comamonas, Rubrivivax, Marivita, Succinimouas) and choline were found in the gut of Zhongdian yak cows. These interactions may be the main contributors to methanogen inhibition, producing less methane leading to higher-efficient milk fat production. Conclusions A study of the gut microbe, gut metabolites, and milk fat percentage of Zhongdian yak cows revealed that the variations in milk fat percentage between yak cows may be caused by the gut microbes and their metabolites, especially Firmicutes-myristic acid and Proteobacteria-choline interactions, which are important to milk fat synthesis. Our study provides new insights into the functional roles of the gut microbiome in producing small molecule metabolites and contributing to milk performance traits in yak cows

    Characterizing Genes with Distinct Methylation Patterns in the Context of Protein-Protein Interaction Network: Application to Human Brain Tissues

    Get PDF
    <div><p>Background</p><p>DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery.</p><p>Results</p><p>In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome.</p><p>Conclusions</p><p>We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.</p></div
    corecore