3,717 research outputs found

    Phosphorus fertilizer requirements for macadamia

    Get PDF

    The Neon Abundance of Galactic Wolf-Rayet Stars

    Full text link
    The fast, dense winds which characterize Wolf-Rayet (WR) stars obscure their underlying cores, and complicate the verification of evolving core and nucleosynthesis models. Core evolution can be probed by measuring abundances of wind-borne nuclear processed elements, partially overcoming this limitation. Using ground-based mid-infrared spectroscopy and the 12.81um [NeII] emission line measured in four Galactic WR stars, we estimate neon abundances and compare to long-standing predictions from evolved-core models. For the WC star WR121, this abundance is found to be >~11x the cosmic value, in good agreement with predictions. For the three less-evolved WN stars, little neon enhancement above cosmic values is measured, as expected. We discuss the impact of clumping in WR winds on this measurement, and the promise of using metal abundance ratios to eliminate sensitivity to wind density and ionization structure.Comment: Accepted for publication in ApJ; 9 pages, 2 color figures, 4 table

    The Inner Rings of Beta Pictoris

    Get PDF
    We present Keck images of the dust disk around Beta Pictoris at 17.9 microns that reveal new structure in its morphology. Within 1" (19 AU) of the star, the long axis of the dust emission is rotated by more than 10 degrees with respect to that of the overall disk. This angular offset is more pronounced than the warp detected at 3.5" by HST, and in the opposite direction. By contrast, the long axis of the emission contours at ~ 1.5" from the star is aligned with the HST warp. Emission peaks between 1.5" and 4" from the star hint at the presence of rings similar to those observed in the outer disk at ~ 25" with HST/STIS. A deconvolved image strongly suggests that the newly detected features arise from a system of four non-coplanar rings. Bayesian estimates based on the primary image lead to ring radii of 14+/-1 AU, 28+/-3 AU, 52+/-2 AU and 82+/-2 AU, with orbital inclinations that alternate in orientation relative to the overall disk and decrease in magnitude with increasing radius. We believe these new results make a strong case for the existence of a nascent planetary system around Beta Pic.Comment: 5 pages, 2 figures, PDF format. Published in ApJL, December 20,200

    PLANT INSTRUMENTATION PROGRAM. Quarterly Report No. 2, July--September 1970.

    Full text link
    corecore