30 research outputs found

    Visual simulators and programmable blur

    Get PDF
    CIP 2019, San Lorenzo de El Escorial, Madrid, 20th - 22nd, 2019Peer reviewe

    Optical and visual quality with physical and visually simulated presbyopic multifocal contact lenses

    Get PDF
    16 pags. 6 figs., 1 tab.Purpose: As multifocal contact lenses (MCLs) expand as a solution for presbyopia correction, a better understanding of their optical and visual performance becomes essential. Also, providing subjects with the experience of multifocal vision before contact lens fitting becomes critical, both to systematically test different multifocal designs and to optimize selection in the clinic. In this study, we evaluated the ability of a simultaneous vision visual simulator (SimVis) to represent MCLs. Methods: Through focus (TF) optical and visual quality with a center-near aspheric MCL (low, medium and high near adds) were measured using a multichannel polychromatic Adaptive Optics visual simulator equipped with double-pass, SimVis (temporal multi-plexing), and psychophysical channels to allow measurements on-bench and in vivo. On bench TF optical quality of SimVis-simulated MCLs was obtained from double-pass (DP) images and images of an E-stimulus using artificial eyes. Ten presbyopic subjects were fitted with the MCL. Visual acuity (VA) and DP retinal images were measured TF in a 4.00 D range with the MCL on eye, and through SimVis simulations of the same MCLs on the same subjects. Results: TF optical (on bench and in vivo) and visual (in vivo) quality measurements captured the expected broadening of the curves with increasing add. Root mean square difference between real and SimVis-simulated lens was 0.031/0.025 (low add), 0.025/0.015 (medium add), 0.019/0.011 (high add), for TF DP and TF LogMAR VA, respectively. A shape similarity metric shows high statistical values (lag κ = 0), rho = 0.811/0.895 (low add), 0.792/0.944 (medium add), and 0.861/0.915 (high add) for TF DP/LogMAR VA, respectively. Conclusions: MCLs theoretically and effectively expand the depth of focus. A novel simulator, SimVis, captured the through-focus optical and visual performance of the MCL in most of the subjects. Visual simulators allow subjects to experience vision with multifocal lenses prior to testing them on-eye. Translational Relevance: Simultaneous visual simulators allow subjects to experience multifocal vision non-invasively. We demonstrated equivalency between real multifocal contact lenses and SimVis-simulated lenses. The results suggest that SimVis is a suitable technique to aid selection of presbyopic corrections in the contactology practice.Supported by the European Research Council (ERC-2011-AdC 294099) to SM; Spanish Government (FIS2017-84753R) to SM, and pre-doctoral fellowship (FPU16/01944) to SA; Collaborative agreement with Johnson & Johnson Vision, Inc., Research & Development, Jacksonville, FL, USA

    Discovering Light: Fun Experiments with Optics

    Get PDF
    Editor(s): Maria Viñas-Peña.Light is an element that draws together many areas of human knowledge: physics, chemistry, biology, astronomy, engineering, and art. Moreover, optical phenomena and the technologies based on them are widespread in our daily lives. However, it can be difficult to understand or explain these phenomena. What is light? Where are optics and photonics present in our lives and in nature? What lies behind different optical phenomena? What is an optical instrument? How does the eye resemble an optical instrument? How can we explain human vision? This book, written by a group of young scientists, answers these questions and many more to help you to get to know the exciting world of optics and photonics. It is intended for the general public, with an emphasis on students at all levels of secondary education. A variety of easy-to-follow experiments related to different optical phenomena and technologies are presented. All of them are preceded by an explanation of the concepts and accompanied by numerous illustrations and curiosities. All of it is meant for you to have fun with optics and photonics!Peer reviewe

    Simulación y caracterización de correcciones ópticas : $b impacto de diseños, aberraciones monocromáticas y policromáticas

    No full text
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Óptica y Optometría, leída el 31-05-2022The eye is an optical element that projects images of the world onto the retina. This optical system is not perfect, as it suffers from aberrations as well as diffraction and scattering that degrade retinal image quality. In recent years, a large number of techniques based on Adaptive Optics (AO) have been developed for the measurement and correction of ocular aberrations. Measurements of the eye with AO systems have allowed a better understanding of the contribution of the different components of the eye to the degradation of image quality. Furthermore, the manipulation of optical aberrations allows understanding of the connections between optical degradation and perceived visual quality. The optics of the eye change with age, eye diseases, and treatments. Therefore, understanding the sources of variations in natural aberrations, the interactions between monochromatic aberrations and chromatic aberrations (Longitudinal Chromatic Aberration 'LCA' and Transverse Chromatic Aberration 'TCA'), and the impact of optical blurring on vision is key. This knowledge allows to shed light on some basic mechanisms of the eye and, among others, to guide the design and optimization of new alternatives for the correction of presbyopia (multifocal intraocular lenses and multifocal contact lenses), as well as other more complex personalized refractive and presbyopic corrections. Visual simulators based on AO are excellent tools to investigate vision under natural and modified optics in monochromatic and polychromatic conditions. A wavefront sensor in combination with an active optical element (deformable mirror, spatial light modulator, or simultaneous vision simulators based on SimVis technology) and a psychophysical channel allows investigating the optics of the eye, the neural adaptation processes behind, and the response to modified or simulated optics. In addition to modifying the optics using active elements, it can also be done using Fourier optics, convolving the PSF (Point Spread Function) characteristic of an aberration pattern with our object. This allows us to study the impact of convolved images by different patterns of aberrations on visual performance (in both monochromatic and polychromatic conditions)...El ojo es un elemento óptico que proyecta imágenes del mundo en la retina. Este sistema óptico no es perfecto, ya que sufre de aberraciones, así como difracción y dispersión que degradan la calidad de la imagen retiniana. En los últimos años, se han desarrollado un gran número de técnicas basadas en Óptica Adaptativa (AO) para la medida y corrección de las aberraciones oculares. Las mediciones del ojo con sistemas de AO han permitido comprender mejor la contribución de los diferentes componentes del ojo a la degradación de la calidad de las imágenes. Además, la manipulación de las aberraciones ópticas permite comprender las conexiones entre la degradación óptica y la calidad visual percibida. La óptica del ojo cambia con la edad, las enfermedades oculares y los tratamientos. Por lo tanto, comprender las fuentes de variaciones de las aberraciones naturales, las interacciones entre las aberraciones monocromáticas (HOA) y cromáticas (Aberración cromática longitudinal 'LCA' y Aberración cromática transversal 'TCA') y el impacto de la borrosidad óptica en la visión es decisivo. Este conocimiento permite arrojar luz sobre algunos mecanismos básicos del ojo y, entre otros, orientar el diseño y optimización de nuevas alternativas para la corrección de la presbicia (lentes intraoculares y lentes de contacto multifocales) , así como otras correcciones refractivas más complejas y personalizadas. Los simuladores visuales basados en la AO son excelentes herramientas para investigar la visión bajo ópticas naturales y modificadas en condiciones monocromáticas y policromáticas. Un sensor de frente de onda en combinación con un elemento óptico activo (espejo deformable, modulador espacial de luz o simuladores de visión simultánea basados en la tecnología SimVis) y un canal psicofísico permite investigar la óptica del ojo, los procesos de adaptación neural detrás de él y la respuesta a la óptica modificada o simulada. Además de modificar la óptica mediante elementos activos se puede realizar mediante óptica de Fourier, convolucionando la PSF (Función de dispersión de un punto) característico de un patrón de aberraciones con nuestro objeto. Esto nos permite estudiar el impacto de imágenes convolucionadas por diferentes patrones de aberraciones en el rendimiento visual (tanto en condiciones monocromáticas como policromáticas)...Fac. de Óptica y OptometríaTRUEunpu

    Testing the effect of ocular aberrations on perceived transverse chromatic aberration

    No full text
    IONS BCN ’19, Castelldefels, Barcelona, June 26-29, 201

    Testing the effect of ocular aberrations on perceived Transverse Chromatic Aberration

    No full text
    ARVO 2019, Vancouver Convention Centre, Vancouver, B.C., April 28 – May 2 (2019

    Visual simulation of multifocal lenses in patients before and after implantation of diffractive trifocal lenses

    No full text
    XI Workshop on Adaptive Optics for Industry and Medicine. AOIM XI, MURCIA 2018. 04-07 of March. SPONSORS CONFERENCE VENUE, Murcia Occidental 7 Coronas Hotel- Paseo de Garay, 5, 30003 Murcia.- https://eventos.um.es/12979/programme/aoim-xi-murcia-2018.htm

    Visual Impact of the Chromatic aberrations of the eye

    Get PDF
    CIP 2019, San Lorenzo de El Escorial, Madrid, 20th - 22nd, 201
    corecore