147 research outputs found

    5-{(2S,3R,4S,5S,6R)-3,4-Dihydr­oxy-6-hydroxy­meth­yl-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydr­oxy-6-methyl­tetra­hydro­pyran-2-yloxy]tetra­hydro­pyran-2-yloxy}­-7-hydr­oxy-2-(4-hydroxy­phen­yl)chromen-4-one monohydrate

    Get PDF
    In the title compound, C27H30O14·H2O, the hydroxy­phenyl ring makes a dihedral angle of 20.05 (11)° with the chromenone ring system. The crystal structure is stabilized by intra- and inter­molecular O—H⋯O hydrogen bonds. The absolute configuration was assigned on the basis of an analagous structure

    FlyNet 2.0: Drosophila heart 3D (2D + time) segmentation in optical coherence microscopy images using a convolutional long short-term memory neural network

    Get PDF
    A custom convolutional neural network (CNN) integrated with convolutional long short-term memory (LSTM) achieves accurate 3D (2D + time) segmentation in cross-sectional videos of the Drosophila heart acquired by an optical coherence microscopy (OCM) system. While our previous FlyNet 1.0 model utilized regular CNNs to extract 2D spatial information from individual video frames, convolutional LSTM, FlyNet 2.0, utilizes both spatial and temporal information to improve segmentation performance further. To train and test FlyNet 2.0, we used 100 datasets including 500,000 fly heart OCM images. OCM videos in three developmental stages and two heartbeat situations were segmented achieving an intersection over union (IOU) accuracy of 92%. This increased segmentation accuracy allows morphological and dynamic cardiac parameters to be better quantified

    Effects of a Rehabilitation Program for Individuals with Chronic Spinal Cord Injury in Shanghai, China

    Get PDF
    Background: Specialized Institution-Based Rehabilitation (SIBR) is the cornerstone of care and treatment for individuals with spinal cord injury, but most people with chronic spinal cord injury (CSCI) living in China have no SIBR experience after acute care hospital discharge. In 2009, an SIBR facility was set up in Shanghai (China) to fill this important gap in care. The purpose of the study was to evaluate the effectiveness of an integrated rehabilitation training program among individuals with CSCI living in Shanghai. Methods: A within-subject pre-posttest design was used to evaluate the SIBR. The sample included 455 individuals ≥1 year post-SCI, who were older than 18 years of age and were enrolled in a rehabilitation center in Shanghai, China, between 2013 and 2019. The data included individuals’ sociodemographic and injury characteristics, and twenty-three indicators were used as outcome measurements to evaluate basic life skills and their applications in family and social life. Multivariate linear regression was conducted to determine which factors might have influenced the effectiveness of the SIBR. Results: All basic life skills and their applications in family and social life were improved, but with variations across socio-demographics. Female individuals with CSCI had better outcomes in basic life skills than did males. In terms of basic life skills and their applications in family and social life, individuals with a low level (thoracic or lumbosacral) of injury achieved more significant functional gains than those with a higher level (cervical). The baseline score was also a relevant factor in functional outcome. Conclusions: Even for individuals with a long SCI history, SIBR training can improve basic life skills and the applications of those skills in family and social life settings

    Phosphate glass fibers facilitate proliferation and osteogenesis through Runx2 transcription in murine osteoblastic cells

    Get PDF
    Cell-material interactions and compatibility are important aspects of bioactive materials for bone tissue engineering. Phosphate glass fiber (PGF) is an attractive inorganic filler with fibrous structure and tunable composition, which has been widely investigated as a bioactive filler for bone repair applications. However, the interaction of osteoblasts with PGFs has not been widely investigated to elucidate the osteogenic mechanism of PGFs. In this study, different concentrations of short PGFs with interlaced oriented topography were co-cultured with MC3T3-E1 cells for different periods, and the synergistic effects of fiber topography and ionic product of PGFs on osteoblast responses including cell adhesion, spreading, proliferation and osteogenic differentiation were investigated. It was found that osteoblasts were more prone to adhere on PGFs through vinculin protein, leading to enhanced cell proliferation with polygonal cell shape and spreading cellular actin filaments. In addition, osteoblasts incubated on PGF meshes showed enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and increased expression of osteogenesis-related marker genes, which could be attributed to the Wnt/β-catenin/Runx2 signaling pathway. This study elucidated the possible mechanism of PGF on triggering specific osteoblast behavior, which would be highly beneficial for designing PGF-based bone graft substitutes with excellent osteogenic functions

    Spatiotemporal genomic analysis reveals distinct molecular features in recurrent stage I non-small cell lung cancers

    Get PDF
    Stage I non-small cell lung cancer (NSCLC) presents diverse outcomes. To identify molecular features leading to tumor recurrence in early-stage NSCLC, we perform multiregional whole-exome sequencing (WES), RNA sequencing, and plasma-targeted circulating tumor DNA (ctDNA) detection analysis between recurrent and recurrent-free stage I NSCLC patients (CHN-P cohort) who had undergone R0 resection with a median 5-year follow-up time. Integrated analysis indicates that the multidimensional clinical and genomic model can stratify the prognosis of stage I NSCLC in both CHN-P and EUR-T cohorts and correlates with positive pre-surgical deep next generation sequencing (NGS) ctDNA detection. Increased genomic instability related to DNA interstrand crosslinks and double-strand break repair processes is significantly associated with early tumor relapse. This study reveals important molecular insights into stage I NSCLC and may inform clinical postoperative treatment and follow-up strategies

    Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation

    Get PDF
    The effect of functionalized nickel (Ni) nanoparticles capped with positively charged tetraheptylammonium on cellular uptake of drug quercetin into hepatocellular carcinoma cells (SMMC-7721) has been explored in this study via microscopy and electrochemical characterization as well as MTT assay. Meanwhile, the influence of Ni nanoparticles and/or quercetin on cell proliferation has been further evaluated by the real-time cell electronic sensing (RT-CES) study. Our observations indicate that Ni nanoparticles could efficiently improve the permeability of cancer cell membrane, and remarkably enhance the accumulation of quercetin in SMMC-7721 cells, suggesting that Ni nanoparticles and quercetin would facilitate the synergistic effect on inhibiting proliferation of cancer cells

    Genomes shed light on the evolution of Begonia, a mega‐diverse genus

    Get PDF
    Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with ~2,000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana, and B. peltatifolia), and whole genome shot-gun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22,059 - 23,444 protein-coding genes. Synteny analysis revealed a lineage specific whole-genome duplication (WGD) that occurred just before the diversification of the Begonia. Functional enrichment of gene families retained after WGD highlight the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade-adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade

    A potential therapeutic drug for osteoporosis: prospect for osteogenic LncRNAs

    Get PDF
    Long non-coding RNAs (LncRNAs) play essential roles in multiple physiological processes including bone formation. Investigators have revealed that LncRNAs regulated bone formation through various signaling pathways and micro RNAs (miRNAs). However, several problems exist in current research studies on osteogenic LncRNAs, including sophisticated techniques, high cost for in vivo experiment, as well as low homology of LncRNAs between animal model and human, which hindered translational medicine research. Moreover, compared with gene editing, LncRNAs would only lead to inhibition of target genes rather than completely knocking them out. As the studies on osteogenic LncRNA gradually proceed, some of these problems have turned osteogenic LncRNA research studies into slump. This review described some new techniques and innovative ideas to address these problems. Although investigations on osteogenic LncRNAs still have obtacles to overcome, LncRNA will work as a promising therapeutic drug for osteoporosis in the near future
    corecore