10 research outputs found

    Linking forest cover, soil erosion and mire hydrology to late-Holocene human activity and climate in NW Spain

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm).This article has been made available through the Brunel Open Access Publishing Fund.Forest clearance is one of the main drivers of soil erosion and hydrological changes in mires, although climate may also play a significant role. Because of the wide range of factors involved, understanding these complex links requires long-term multi-proxy approaches and research on the best proxies to focus. A peat core from NW Spain (Cruz do Bocelo mire), spanning the last ~3000 years, has been studied at high resolution by physical (density and loss on ignition (LOI)), geochemical (elemental composition) and palynological (pollen and non-pollen palynomorphs) analyses. Proxies related to mineral matter fluxes from the catchment (lithogenic tracers, Glomus and Entorrhiza), rainfall (Bromine), mire hydrology (HdV-18), human pressure (Cerealia-type, nitrophilous taxa and coprophilous fungi) and forest cover (mesophilous tree taxa) were the most useful to reconstruct the evolution of the mire and its catchment. Forest clearance for farming was one of the main drivers of environmental change from at least the local Iron Age (~2685 cal. yr BP) onwards. The most intense phase of deforestation occurred during Roman and Germanic times and the late Middle Ages. During these phases, the entire catchment was affected, resulting in enhanced soil erosion and severe hydrological modifications of the mire. Climate, especially rainfall, may have also accelerated these processes during wetter periods. However, it is noteworthy that the hydrology of the mire seems to have been insensitive to rainfall variations when mesophilous forest dominated. Abrupt changes were only detected once intense forest clearance commenced during the Iron Age/Roman transition (~2190 cal. yr BP) phase, which represented a tipping point in catchment's ability to buffer impacts. Overall, our findings highlight the importance of studying ecosystems' long-term trajectories and catchment-wide processes when implementing mire habitat protection measures.This work was funded by the projects CGL2010-20672 (Plan Nacional I+D+i, Spanish Ministry of Science and Innovation) and 10PXIB200182PR (General Directorate of I+D, Xunta de Galicia). N Silva-Sánchez and L López-Merino are currently supported by a FPU predoctoral scholarship (AP2010-3264) funded by the Spanish Government and a MINT postdoctoral fellowship funded by the Brunel Institute for the Environment, respectively

    Late Holocene ecological history of Pinus pinaster forests in the Sierra de Gredos of central Spain

    No full text
    15 páginas, 4 figuras, 1 tabla.This article describes the patterns and processes of vegetation change and fire history in the Late Holocene (c. 2400 calendar year BP) palaeoecological sequence of Lanzahíta, Sierra de Gredos in central Spain, and provides the first Iberian pollen sequence undertaken within a monospecific Pinus pinaster woodland. These new data reassess not only the autochthonous nature of this pine species in the region and the Iberian Peninsula, but also the naturalness of well-developed cluster pine forests. Conflicts of palaeoecological evidence with phytosociological models of vegetation dynamics in the study region, and the relationships of P. pinaster with fire occurrence in Mediterranean-type ecosystems, are discussed.This study was funded by the projects HAR2008-06477-C03-03/HIST, CGL-2006-2956-BOS (Plan Nacional I + D + i, Ministry of Education and Science, Spain), CSD2007-00058 (Consolider Program, Consejo Superior de Investigaciones Científicas, Spain) and Paleodiversitas Network (Fundación Séneca, Murcia).Peer reviewe

    Late Holocene ecological history of Pinus pinaster forests in the Sierra de Gredos of central Spain

    No full text
    corecore