28 research outputs found

    DataSheet_2_Identification of a QTL region for ashy stem blight resistance using genome-wide association and linage analysis in common bean recombinant inbred lines derived from BAT 477 and NY6020-4.xlsx

    No full text
    Ashy stem blight (ASB), caused by the fungus Macrophomina phaseolina (Tassi) Goidanich is an important disease of the common bean (Phaseolus vulgaris L.). It is important to identify quantitative trait loci (QTL) for ASB resistance and introgress into susceptible cultivars of the common bean. The objective of this research was to identify QTL and single nucleotide polymorphism (SNP) markers associated with ASB resistance in recombinant inbred lines (RIL) derived from a cross between BAT 477 and NY6020-4 common bean. One hundred and twenty-six F6:7 RIL were phenotyped for ASB in the greenhouse. Disease severity was scored on a scale of 1–9. Genotyping was performed using whole genome resequencing with 2x common bean genome size coverage, and over six million SNPs were obtained. After being filtered, 72,017 SNPs distributed on 11 chromosomes were used to conduct the genome-wide association study (GWAS) and QTL mapping. A novel QTL region of ~4.28 Mbp from 35,546,329 bp to 39,826,434 bp on chromosome Pv03 was identified for ASB resistance. The two SNPs, Chr03_39824257 and Chr03_39824268 located at 39,824,257 bp and 39,824,268 bp on Pv03, respectively, were identified as the strongest markers associated with ASB resistance. The gene Phvul.003G175900 (drought sensitive, WD repeat-containing protein 76) located at 39,822,021 – 39,824,655 bp on Pv03 was recognized as one candidate for ASB resistance in the RIL, and the gene contained the two SNP markers. QTL and SNP markers may be used to select plants and lines for ASB resistance through marker-assisted selection (MAS) in common bean breeding.</p

    DataSheet_1_Identification of a QTL region for ashy stem blight resistance using genome-wide association and linage analysis in common bean recombinant inbred lines derived from BAT 477 and NY6020-4.xlsx

    No full text
    Ashy stem blight (ASB), caused by the fungus Macrophomina phaseolina (Tassi) Goidanich is an important disease of the common bean (Phaseolus vulgaris L.). It is important to identify quantitative trait loci (QTL) for ASB resistance and introgress into susceptible cultivars of the common bean. The objective of this research was to identify QTL and single nucleotide polymorphism (SNP) markers associated with ASB resistance in recombinant inbred lines (RIL) derived from a cross between BAT 477 and NY6020-4 common bean. One hundred and twenty-six F6:7 RIL were phenotyped for ASB in the greenhouse. Disease severity was scored on a scale of 1–9. Genotyping was performed using whole genome resequencing with 2x common bean genome size coverage, and over six million SNPs were obtained. After being filtered, 72,017 SNPs distributed on 11 chromosomes were used to conduct the genome-wide association study (GWAS) and QTL mapping. A novel QTL region of ~4.28 Mbp from 35,546,329 bp to 39,826,434 bp on chromosome Pv03 was identified for ASB resistance. The two SNPs, Chr03_39824257 and Chr03_39824268 located at 39,824,257 bp and 39,824,268 bp on Pv03, respectively, were identified as the strongest markers associated with ASB resistance. The gene Phvul.003G175900 (drought sensitive, WD repeat-containing protein 76) located at 39,822,021 – 39,824,655 bp on Pv03 was recognized as one candidate for ASB resistance in the RIL, and the gene contained the two SNP markers. QTL and SNP markers may be used to select plants and lines for ASB resistance through marker-assisted selection (MAS) in common bean breeding.</p

    Table_1_Mapping and selection of downy mildew resistance in spinach cv. whale by low coverage whole genome sequencing.xlsx

    No full text
    Spinach (Spinacia oleracea) is a popular leafy vegetable crop and commercial production is centered in California and Arizona in the US. The oomycete Peronospora effusa causes the most important disease in spinach, downy mildew. A total of nineteen races of P. effusa are known, with more than 15 documented in the last three decades, and the regular emergence of new races is continually overcoming the genetic resistance to the pathogen. This study aimed to finely map the downy mildew resistance locus RPF3 in spinach, identify single nucleotide polymorphism (SNP) markers associated with the resistance, refine the candidate genes responsible for the resistance, and evaluate the prediction performance using multiple machine learning genomic prediction (GP) methods. Segregating progeny population developed from a cross of resistant cultivar Whale and susceptible cultivar Viroflay to race 5 of P. effusa was inoculated under greenhouse conditions to determine downy mildew disease response across the panel. The progeny panel and the parents were resequenced at low coverage (1x) to identify genome wide SNP markers. Association analysis was performed using disease response phenotype data and SNP markers in TASSEL, GAPIT, and GENESIS programs and mapped the race 5 resistance loci (RPF3) to 1.25 and 2.73 Mb of Monoe-Viroflay chromosome 3 with the associated SNP in the 1.25 Mb region was 0.9 Kb from the NBS-LRR gene SOV3g001250. The RPF3 locus in the 1.22-1.23 Mb region of Sp75 chromosome 3 is 2.41-3.65 Kb from the gene Spo12821 annotated as NBS-LRR disease resistance protein. This study extended our understanding of the genetic basis of downy mildew resistance in spinach cultivar Whale and mapped the RPF3 resistance loci close to the NBS-LRR gene providing a target to pursue functional validation. Three SNP markers efficiently selected resistance based on multiple genomic selection (GS) models. The results from this study have added new genomic resources, generated an informed basis of the RPF3 locus resistant to spinach downy mildew pathogen, and developed markers and prediction methods to select resistant lines.</p

    Image_2_Mapping and selection of downy mildew resistance in spinach cv. whale by low coverage whole genome sequencing.jpeg

    No full text
    Spinach (Spinacia oleracea) is a popular leafy vegetable crop and commercial production is centered in California and Arizona in the US. The oomycete Peronospora effusa causes the most important disease in spinach, downy mildew. A total of nineteen races of P. effusa are known, with more than 15 documented in the last three decades, and the regular emergence of new races is continually overcoming the genetic resistance to the pathogen. This study aimed to finely map the downy mildew resistance locus RPF3 in spinach, identify single nucleotide polymorphism (SNP) markers associated with the resistance, refine the candidate genes responsible for the resistance, and evaluate the prediction performance using multiple machine learning genomic prediction (GP) methods. Segregating progeny population developed from a cross of resistant cultivar Whale and susceptible cultivar Viroflay to race 5 of P. effusa was inoculated under greenhouse conditions to determine downy mildew disease response across the panel. The progeny panel and the parents were resequenced at low coverage (1x) to identify genome wide SNP markers. Association analysis was performed using disease response phenotype data and SNP markers in TASSEL, GAPIT, and GENESIS programs and mapped the race 5 resistance loci (RPF3) to 1.25 and 2.73 Mb of Monoe-Viroflay chromosome 3 with the associated SNP in the 1.25 Mb region was 0.9 Kb from the NBS-LRR gene SOV3g001250. The RPF3 locus in the 1.22-1.23 Mb region of Sp75 chromosome 3 is 2.41-3.65 Kb from the gene Spo12821 annotated as NBS-LRR disease resistance protein. This study extended our understanding of the genetic basis of downy mildew resistance in spinach cultivar Whale and mapped the RPF3 resistance loci close to the NBS-LRR gene providing a target to pursue functional validation. Three SNP markers efficiently selected resistance based on multiple genomic selection (GS) models. The results from this study have added new genomic resources, generated an informed basis of the RPF3 locus resistant to spinach downy mildew pathogen, and developed markers and prediction methods to select resistant lines.</p

    Image_3_Mapping and selection of downy mildew resistance in spinach cv. whale by low coverage whole genome sequencing.jpeg

    No full text
    Spinach (Spinacia oleracea) is a popular leafy vegetable crop and commercial production is centered in California and Arizona in the US. The oomycete Peronospora effusa causes the most important disease in spinach, downy mildew. A total of nineteen races of P. effusa are known, with more than 15 documented in the last three decades, and the regular emergence of new races is continually overcoming the genetic resistance to the pathogen. This study aimed to finely map the downy mildew resistance locus RPF3 in spinach, identify single nucleotide polymorphism (SNP) markers associated with the resistance, refine the candidate genes responsible for the resistance, and evaluate the prediction performance using multiple machine learning genomic prediction (GP) methods. Segregating progeny population developed from a cross of resistant cultivar Whale and susceptible cultivar Viroflay to race 5 of P. effusa was inoculated under greenhouse conditions to determine downy mildew disease response across the panel. The progeny panel and the parents were resequenced at low coverage (1x) to identify genome wide SNP markers. Association analysis was performed using disease response phenotype data and SNP markers in TASSEL, GAPIT, and GENESIS programs and mapped the race 5 resistance loci (RPF3) to 1.25 and 2.73 Mb of Monoe-Viroflay chromosome 3 with the associated SNP in the 1.25 Mb region was 0.9 Kb from the NBS-LRR gene SOV3g001250. The RPF3 locus in the 1.22-1.23 Mb region of Sp75 chromosome 3 is 2.41-3.65 Kb from the gene Spo12821 annotated as NBS-LRR disease resistance protein. This study extended our understanding of the genetic basis of downy mildew resistance in spinach cultivar Whale and mapped the RPF3 resistance loci close to the NBS-LRR gene providing a target to pursue functional validation. Three SNP markers efficiently selected resistance based on multiple genomic selection (GS) models. The results from this study have added new genomic resources, generated an informed basis of the RPF3 locus resistant to spinach downy mildew pathogen, and developed markers and prediction methods to select resistant lines.</p

    Image_1_Mapping and selection of downy mildew resistance in spinach cv. whale by low coverage whole genome sequencing.jpeg

    No full text
    Spinach (Spinacia oleracea) is a popular leafy vegetable crop and commercial production is centered in California and Arizona in the US. The oomycete Peronospora effusa causes the most important disease in spinach, downy mildew. A total of nineteen races of P. effusa are known, with more than 15 documented in the last three decades, and the regular emergence of new races is continually overcoming the genetic resistance to the pathogen. This study aimed to finely map the downy mildew resistance locus RPF3 in spinach, identify single nucleotide polymorphism (SNP) markers associated with the resistance, refine the candidate genes responsible for the resistance, and evaluate the prediction performance using multiple machine learning genomic prediction (GP) methods. Segregating progeny population developed from a cross of resistant cultivar Whale and susceptible cultivar Viroflay to race 5 of P. effusa was inoculated under greenhouse conditions to determine downy mildew disease response across the panel. The progeny panel and the parents were resequenced at low coverage (1x) to identify genome wide SNP markers. Association analysis was performed using disease response phenotype data and SNP markers in TASSEL, GAPIT, and GENESIS programs and mapped the race 5 resistance loci (RPF3) to 1.25 and 2.73 Mb of Monoe-Viroflay chromosome 3 with the associated SNP in the 1.25 Mb region was 0.9 Kb from the NBS-LRR gene SOV3g001250. The RPF3 locus in the 1.22-1.23 Mb region of Sp75 chromosome 3 is 2.41-3.65 Kb from the gene Spo12821 annotated as NBS-LRR disease resistance protein. This study extended our understanding of the genetic basis of downy mildew resistance in spinach cultivar Whale and mapped the RPF3 resistance loci close to the NBS-LRR gene providing a target to pursue functional validation. Three SNP markers efficiently selected resistance based on multiple genomic selection (GS) models. The results from this study have added new genomic resources, generated an informed basis of the RPF3 locus resistant to spinach downy mildew pathogen, and developed markers and prediction methods to select resistant lines.</p

    Expression analysis of differentially expressed genes from Lin et al., 2014 [24] closely-linked to significant SNPs (P<0.001) associated with <i>P</i>. <i>sojae</i> races.

    No full text
    <p>Expression analysis of differentially expressed genes from Lin et al., 2014 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0184613#pone.0184613.ref024" target="_blank">24</a>] closely-linked to significant SNPs (P<0.001) associated with <i>P</i>. <i>sojae</i> races.</p

    Genome-wide association mapping of resistance to <i>Phytophthora sojae</i> in a soybean [<i>Glycine max</i> (L.) Merr.] germplasm panel from maturity groups IV and V - Fig 1

    No full text
    <p>Model-based population structure for the soybean panel: (A) Delta K values for different numbers of populations assumed (K) in the STRUCTURE analysis, (B) phylogenetic tree constructed by neighbor-joining (NJ) of genetic distance by MEGA 6, and (C) Classification of two populations using STRUCTURE 2.3.4. The distribution of the accessions to different populations is indicated by the color code (Q1: red and Q2: green), consistent in the figures (B) and (C).</p

    Principle Coordinates Analysis showing genetic distances between individuals in five clusters.

    No full text
    <p>Each color represents a STRUCTURE cluster. Cluster 1 (red), cluster 2 (blue), cluster 3 (green), cluster 4 (purple), and cluster 5 (orange).</p
    corecore