14 research outputs found

    Schisandrin B Prevents Hind Limb from Ischemia-Reperfusion-Induced Oxidative Stress and Inflammation via MAPK/NF-κB Pathways in Rats

    No full text
    Schisandrin B (ScB), isolated from Schisandra chinensis (S. chinensis), is a traditional Chinese medicine with proven cardioprotective and neuroprotective effects. However, it is unclear whether ScB also has beneficial effects on rat hind limb ischemia/reperfusion (I/R) injury model. In this study, ScB (20 mg/kg, 40 mg/kg, and 80 mg/kg) was administered via oral gavage once daily for 5 days before the surgery. After 6 h ischemia and 24 h reperfusion of left hind limb, ScB reduced I/R induced histological changes and edema. ScB also suppressed the oxidative stress through decreasing MDA level and increasing SOD activity. Moreover, above changes were associated with downregulated TNF-α mRNA expression and reduced level of IL-1β in plasma. Meanwhile, ScB treatment downregulated activation of p38MAPK, ERK1/2, and NF-κB in ischemic skeletal muscle. These results demonstrate that ScB treatment could prevent hind limb I/R skeletal muscle injury possibly by attenuating oxidative stress and inflammation via p38MAPK, ERK1/2, and NF-κB pathways

    Spatio-Temporal Variations of the Stable H-O Isotopes and Characterization of Mixing Processes between the Mainstream and Tributary of the Three Gorges Reservoir

    No full text
    Understanding the runoff characteristics and interaction processes between the mainstream and its tributaries are an essential issue in watershed and water management. In this paper, hydrogen (δD) and oxygen (δ18O) isotope techniques were used in the mainstream and Zhuyi Bay (ZYB) of the Three Gorges Reservoir (TGR) during the wet and dry seasons in 2015. It revealed that (1) Precipitation was the main source of stream flow compared to the TGR water line with meteoric water line of the Yangtse River basin; (2) The δD and δ18O values exhibited a ‘toward lighter-heavier’ trend along mainstream due to the continuous evaporation effect in the runoff direction, and the fluctuations reflected incoming water from the nearest tributaries. The general trend of d-excess increased with increasing distance from the Three Gorges Dam, which indicated that kinetic fractionation was an important process affecting the isotopic composition. The enrichment effect of isotopes was found in the downstream of TGR; (3) Water mass from the TGR mainstream flowed backward to the confluence zone of ZYB via the middle and bottom layers in the dry season, whereas in the wet season, water reversed through the upper-middle layers due to thermal density flows. This study described and demonstrated that the water cycle of TGR was driven by natural environmental variability and operational system, which will provide valuable information for the water resource management and for controlling the algal blooms in the future

    Lithium-mediated electrochemical nitrogen reduction: Mechanistic insights to enhance performance

    No full text
    Green synthesis of ammonia by electrochemical nitrogen reduction reaction (NRR) shows great potential as an alternative to the Haber-Bosch process but is hampered by sluggish production rate and low Faradaic efficiency. Recently, lithium-mediated electrochemical NRR has received renewed attention due to its reproducibility. However, further improvement of the system is restricted by limited recognition of its mechanism. Herein, we demonstrate that lithium-mediated NRR began with electrochemical deposition of lithium, followed by two chemical processes of dinitrogen splitting and protonation to ammonia. Furthermore, we quantified the extent to which the freshly deposited active lithium lost its activity toward NRR due to a parasitic reaction between lithium and electrolyte. A high ammonia yield of 0.410 ± 0.038 μg s-1 cm-2 geo and Faradaic efficiency of 39.5 ± 1.7% were achieved at 20 mA cm-2 geo and 10 mA cm-2 geo, respectively, which can be attributed to fresher lithium obtained at high current density

    Evaluation of droplet digital PCR rapid detection method and precise diagnosis and treatment for suspected sepsis (PROGRESS): a study protocol for a multi-center pragmatic randomized controlled trial

    No full text
    Abstract Background Sepsis is still a major public health concern and a medical emergency due to its high morbidity and mortality. Accurate and timely etiology diagnosis is crucial for sepsis management. As an emerging rapid and sensitive pathogen detection tool, digital droplet PCR (ddPCR) has shown promising potential in rapid identification of pathogens and antimicrobial resistance genes. However, the diagnostic value and clinical impact of ddPCR tests remains to be studied in patients with suspected sepsis. PROGRESS trial is aimed to evaluate the clinical effectiveness of a novel ddPCR assay compared with standard practice. Methods PROGRESS is a multicenter, open-label, pragmatic randomized controlled trial (pRCT) set in ten hospitals, including departments of infectious disease and intensive care units. In this study, a total of 2292 patients with suspected sepsis will be randomly assigned to two arms: the ddPCR group and the control group with a ratio of 3:1. The primary outcome is the diagnostic efficacy, that is, the sensitivity and specificity of the ddPCR assay compared with the synchronous blood culture. Secondary outcomes include the mortality rates and the mean Sequential Organ Failure Assessment (SOFA) score at follow-up time points, the length of stay in the hospital, the time to directed antimicrobial therapy, duration of broad-spectrum antibiotic use, and the EQ-5D-5L score on day 90. Discussion It is the first multicenter pragmatic RCT to explore the diagnostic efficacy and clinical impact of the ddPCR assay in patients with suspected sepsis, taking advantage of both RCT’s ability to establish causality and the feasibility of pragmatic approaches in real-world studies (RWS). This trial will help us to get a comprehensive view of the assay’s capacity for precise diagnosis and treatment of sepsis. It has the potential to monitor the pathogen load change and to guide the antimicrobial therapy, making a beneficial impact on the prognosis of sepsis patients. Trial registration: ClinicalTrial.gov, NCT05190861. Registered January 13, 2022—‘Retrospectively registered’, https://clinicaltrials.gov/ct2/show/NCT05190861
    corecore