3 research outputs found

    Attachment Site Cysteine Thiol p<i>K</i><sub>a</sub> Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody–Drug Conjugates

    No full text
    The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol p<i>K</i><sub>a</sub>. We measured the cysteine thiol p<i>K</i><sub>a</sub> using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol p<i>K</i><sub>a</sub> (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol p<i>K</i><sub>a</sub> and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol p<i>K</i><sub>a</sub> of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol p<i>K</i><sub>a</sub>. The influence of cysteine thiol p<i>K</i><sub>a</sub> on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering

    Modulating Antibody–Drug Conjugate Payload Metabolism by Conjugation Site and Linker Modification

    No full text
    Previous investigations on antibody-drug conjugate (ADC) stability have focused on drug release by linker-deconjugation due to the relatively stable payloads such as maytansines. Recent development of ADCs has been focused on exploring technologies to produce homogeneous ADCs and new classes of payloads to expand the mechanisms of action of the delivered drugs. Certain new ADC payloads could undergo metabolism in circulation while attached to antibodies and thus affect ADC stability, pharmacokinetics, and efficacy and toxicity profiles. Herein, we investigate payload stability specifically and seek general guidelines to address payload metabolism and therefore increase the overall ADC stability. Investigation was performed on various payloads with different functionalities (e.g., PNU-159682 analog, tubulysin, cryptophycin, and taxoid) using different conjugation sites (HC-A118C, LC-K149C, and HC-A140C) on THIOMAB antibodies. We were able to reduce metabolism and inactivation of a broad range of payloads of THIOMAB antibody-drug conjugates by employing optimal conjugation sites (LC-K149C and HC-A140C). Additionally, further payload stability was achieved by optimizing the linkers. Coupling relatively stable sites with optimized linkers provided optimal stability and reduction of payloads metabolism in circulation in vivo

    Exploration of Pyrrolobenzodiazepine (PBD)-Dimers Containing Disulfide-Based Prodrugs as Payloads for Antibody–Drug Conjugates

    No full text
    A number of cytotoxic pyrrolobenzodiazepine (PBD) monomers containing various disulfide-based prodrugs were evaluated for their ability to undergo activation (disulfide cleavage) <i>in vitro</i> in the presence of either glutathione (GSH) or cysteine (Cys). A good correlation was observed between <i>in vitro</i> GSH stability and <i>in vitro</i> cytotoxicity toward tumor cell lines. The prodrug-containing compounds were typically more potent against cells with relatively high intracellular GSH levels (e.g., KPL-4 cells). Several antibody–drug conjugates (ADCs) were subsequently constructed from PBD dimers that incorporated selected disulfide-based prodrugs. Such HER2 conjugates exhibited potent antiproliferation activity against KPL-4 cells <i>in vitro</i> in an antigen-dependent manner. However, the disulfide prodrugs contained in the majority of such entities were surprisingly unstable toward whole blood from various species. One HER2-targeting conjugate that contained a thiophenol-derived disulfide prodrug was an exception to this stability trend. It exhibited potent activity in a KPL-4 <i>in vivo</i> efficacy model that was approximately three-fold weaker than that displayed by the corresponding parent ADC. The same prodrug-containing conjugate demonstrated a three-fold improvement in mouse tolerability properties <i>in vivo</i> relative to the parent ADC, which did not contain the prodrug
    corecore