28 research outputs found

    What's Hot in Finance (2011-2015)?

    No full text

    Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy

    No full text
    Hypertrophic scar (HS) is an undesirable skin abnormality following deep burns or operations. Although intralesional multi-injection with the suspension of triamcinolone acetonide (TA) and 5-fluorouracil (5-Fu) has exhibited great promise to HS treatment in clinical, the difference of metabolic behavior between TA and 5-Fu remarkably compromised the treatment efficacy. Besides, the traditional injection with great pain is highly dependent on the skill of the experts, which results in poor compliance. Herein, a bilayer dissolving microneedle (BMN) containing TA and 5-Fu (TA-5-Fu-BMN) with biphasic release profile was designed for HS therapy. Equipped with several micro-scale needle tips, the BMN could be self-pressed into the HS with uniform drug distribution and less pain. Both in vitro permeation and in vivo HS retention tests revealed that TA and 5-Fu could coexist in the scar tissue for a sufficient time period due to the well-designed biphasic release property. Subsequently, the rabbit ear HS model was established to assess therapeutic efficacy. The histological analysis showed that TA-5-Fu-BMN could significantly reduce abnormal fibroblast proliferation and collagen fiber deposition. It was also found that the value of scar elevation index was ameliorated to a basal level, together with the downregulation of mRNA and protein expression of Collagen I (Col I) and transforming growth factor-β1 (TGF-β1) after application of TA-5-Fu-BMN. In conclusion, the BMN with biphasic release profiles could serve as a potential strategy for HS treatment providing both convenient administrations as well as controlled drug release behavior

    Genome‐wide identification of a novel miRNA‐based signature to predict recurrence in patients with gastric cancer

    No full text
    The current tumor node metastasis (TNM) staging system is inadequate for identifying high‐risk gastric cancer (GC) patients. Using a systematic and comprehensive‐biomarker discovery and validation approach, we attempted to build a microRNA (miRNA)‐recurrence classifier (MRC) to improve the prognostic prediction of GC. We identified 312 differentially expressed miRNAs in 446 GC tissues compared to 45 normal controls by analyzing high‐throughput data from The Cancer Genome Atlas (TCGA). Using a Cox regression model, we developed an 11‐miRNA signature that could successfully discriminate high‐risk patients in the training set (n = 372; P < 0.0001). Quantitative real‐time polymerase chain reaction‐based validation in an independent clinical cohort (n = 88) of formalin‐fixed paraffin‐embedded clinical GC samples showed that MRC‐derived high‐risk patients succumb to significantly poor recurrence‐free survival in GC patients (P < 0.0001). Cox and stratification analysis indicated that the prognostic value of this signature was independent of clinicopathological risk factors. Time‐dependent receiver operating characteristic (ROC) analysis revealed that the area under the curve of this signature was significantly larger than that of TNM stage in the TCGA (0.733 vs. 0.589 at 3 years, P = 0.004; 0.802 vs. 0.635 at 5 years, P = 0.005) and validation cohort (0.835 vs. 0.689 at 3 years, P = 0.003). A nomogram was constructed for clinical use, which integrated both MRC and clinical‐related variables (depth of invasion, lymph node status and distance metastasis) and did well in the calibration plots. In conclusion, this novel miRNA‐based signature is superior to currently used clinicopathological features for identifying high‐risk GC patients. It can be readily translated into clinical practice with formalin‐fixed paraffin‐embedded specimens for specific decision‐making applications

    MiR-203 suppresses ZNF217 upregulation in colorectal cancer and its oncogenicity.

    No full text
    Zinc finger protein 217 (ZNF217) is essential for cell proliferation and has been implicated in tumorigenesis. However, its expression and exact roles in colorectal cancer (CRC) remain unclear. In this study, we demonstrated that ZNF217 expression was aberrantly upregulated in CRC tissues and associated with poor overall survival of CRC patients. In addition, we found that ZNF217 was a putative target of microRNA (miR)-203 using bioinformatics analysis and confirmed that using luciferase reporter assay. Moreover, in vitro knockdown of ZNF217 or enforced expression of miR-203 attenuated CRC cell proliferation, invasion and migration. Furthermore, combined treatment of ZNF217 siRNA and miR-203 exhibited synergistic inhibitory effects. Taken together, our results provide new evidences that ZNF217 has an oncogenic role in CRC and is regulated by miR-203, and open up the possibility of ZNF217- and miR-203-targeted therapy for CRC

    Hypoxia-inducible MiR-210 is an independent prognostic factor and contributes to metastasis in colorectal cancer.

    No full text
    MicroRNA-210 (miR-210), the master hypoxamir, plays pleiotropic roles in certain cancers; however, its role in the development of human colorectal cancer remains unclear. Herein, we report that miR-210 is frequently up-regulated in colorectal cancer tissues, with high miR-210 expression significantly correlating with large tumor size, lymph node metastasis, advanced clinical stage and poor prognosis. Functionally, miR-210 overexpression promotes the migration and invasion of colorectal cancer cells. Furthermore, miR-210 can be induced by hypoxia and mediates the hypoxia-induced metastasis of colorectal cancer cells. In addition, vacuole membrane protein 1 (VMP1) is identified as the direct and functional target of miR-210. Thus, miR-210 is a useful biomarker for hypoxic tumor cells and a prognostic factor that plays an essential role in colorectal cancer metastasis

    Functional effects of ZNF217 downregulation and miR-203 upregulation on SW480 cells.

    No full text
    <p>(A) Effective suppression of ZNF217 protein expression by ZNF217 siRNA and miR-203 mimics respectively and combinedly. Note that ZNF217 expression is more efficiently suppressed by combined treatment. Suppression of ZNF217 simultaneously resulted in (B) significant inhibition of cell growth and (C) migration and invasion (200×magnification) of SW480 cells compared with negative controls. Note the synergistic inhibitory effect of combination of ZNF217 siRNA and miR-203 mimics, compared with either of them alone (*P < 0.05).</p

    Effects of ZNF217 on proliferation, migration and invasion of SW480 cell lines (A) Expression of ZNF217 in CRC cell lines.

    No full text
    <p>(B) Reduction of ZNF217 expression by transfecting siRNA-ZNF217 significantly inhibited proliferation (* P < 0.05) and (C) migration and invasion of SW480 cells (200× magnification, * P < 0.05) in comparison with parental and negative controls.</p

    Association between patients, characteristics and ZNF217 expression in 82 CRC cases.

    No full text
    <p>Well and moderate:well and moderately differentiated; poor: poorly differentiated</p><p>Association between patients, characteristics and ZNF217 expression in 82 CRC cases.</p
    corecore