13 research outputs found

    Evaluation of Poly(vinyl alcohol)–Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery

    Get PDF
    In recent years, multidrug-resistant bacteria have developed the ability to resist multiple antibiotics, limiting the available options for effective treatment. Raising awareness and providing education on the appropriate use of antibiotics, as well as improving infection control measures in healthcare facilities, are crucial steps to address the healthcare crisis. Further, innovative approaches must be adopted to develop novel drug delivery systems using polymeric matrices as carriers and support to efficiently combat such multidrug-resistant bacteria and thus promote wound healing. In this context, the current work describes the use of two biocompatible and non-toxic polymers, poly(vinyl alcohol) (PVA) and xanthan gum (XG), to achieve hydrogel networks through cross-linking by oxalic acid following the freezing/thawing procedure. PVA/XG-80/20 hydrogels were loaded with different quantities of neomycin sulfate to create promising low-class topical antibacterial formulations with enhanced antimicrobial effects. The inclusion of neomycin sulfate in the hydrogels is intended to impart them with powerful antimicrobial properties, thereby facilitating the development of exceptionally efficient topical antibacterial formulations. Thus, incorporating higher quantities of neomycin sulfate in the PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations yielded promising cycling characteristics. These formulations exhibited outstanding removal efficiency, exceeding 80% even after five cycles, indicating remarkable and consistent adsorption performance with repeated use. Furthermore, both PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations outperformed the drug-free sample, PVA/XG-80/20, demonstrating a significant enhancement in maximum compressive stress

    Synthesis of Bioactive Materials by In Situ One-Step Direct Loading of Syzygium aromaticum Essential Oil into Chitosan-Based Hydrogels

    No full text
    Hydrogel conjugates based on chitosan and an essential oil were synthetized by an ultrasound-assisted emulsification approach. Rheology studies revealed a gel-type structure with pronounced compactness and flexibility while SEM showed the formation of a two-level ordered network with highly interconnected pores. The swelling studies indicated a pH-dependent behavior with a significant overshooting effect. The synergistic effects of the components in clove essential oil led to a strong antioxidant character and an enhanced antimicrobial activity of the conjugate hydrogels. The bioactivity was maintained for 6 months, despite a slight decrease in the antimicrobial effect. Hydrogel conjugates were found to be very stable even after two months immersed in acidic solutions that would otherwise dissolve the chitosan matrix. Ultrasound emulsification was proved as an efficient one-step loading method of hydrophobic clove essential oil into hydrophilic chitosan matrix. It was found that clove oil and its components have a double role. Besides providing bioactivity, they also behave as gelation-inducing agents, acting as an alternative to the classical chemical cross-linkers to ensure the good physical and chemical stabilization of chitosan

    Synthesis of Bioactive Materials by In Situ One-Step Direct Loading of Syzygium aromaticum Essential Oil into Chitosan-Based Hydrogels

    No full text
    Hydrogel conjugates based on chitosan and an essential oil were synthetized by an ultrasound-assisted emulsification approach. Rheology studies revealed a gel-type structure with pronounced compactness and flexibility while SEM showed the formation of a two-level ordered network with highly interconnected pores. The swelling studies indicated a pH-dependent behavior with a significant overshooting effect. The synergistic effects of the components in clove essential oil led to a strong antioxidant character and an enhanced antimicrobial activity of the conjugate hydrogels. The bioactivity was maintained for 6 months, despite a slight decrease in the antimicrobial effect. Hydrogel conjugates were found to be very stable even after two months immersed in acidic solutions that would otherwise dissolve the chitosan matrix. Ultrasound emulsification was proved as an efficient one-step loading method of hydrophobic clove essential oil into hydrophilic chitosan matrix. It was found that clove oil and its components have a double role. Besides providing bioactivity, they also behave as gelation-inducing agents, acting as an alternative to the classical chemical cross-linkers to ensure the good physical and chemical stabilization of chitosan

    An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods

    No full text
    In this paper, we describe an experimental study on the hot alkali extraction of hemicelluloses from wheat straw and corn stalks, two of the most common lignocellulosic biomass constituents in Romania. The chemical compositions of the raw materials were determined analytically, and the relevant chemical components were cellulose, hemicelluloses, lignin, and ash. Using the response surface methodology, the optimum values of the hot alkaline extraction parameters, i.e., time, temperature, and NaOH concentration, were identified and experimentally validated. The physicochemical characterization of the isolated hemicelluloses was performed using HPLC, FTIR, TG, DTG, and 1H-NMR spectroscopy. The main hemicellulose components identified experimentally were xylan, arabinan, and glucan. The study emphasizes that both corn stalks and wheat straw are suitable as raw materials for hemicellulose extraction, highlighting the advantages of alkaline pretreatments and showing that optimization methods can further improve the process efficiency

    New Quaternary Ammonium Derivatives Based on Citrus Pectin

    No full text
    New citrus pectin derivatives carrying pendant N,N-dimethyl-N-alkyl-N-(2-hydroxy propyl) ammonium chloride groups were achieved via polysaccharide derivatization with a mixture of N,N-dimethyl-N-alkyl amine (alkyl = ethyl, butyl, benzyl, octyl, dodecyl) and epichlorohydrin in aqueous solution. The structural characteristics of the polymers were examined via elemental analysis, conductometric titration, Fourier Transform Infrared spectroscopy (FTIR) and 1D (1H and 13C) nuclear magnetic resonance (NMR). Capillary viscosity measurements allowed for the study of viscometric behavior as well as the determination of viscosity–average molar mass for pristine polysaccharide and intrinsic viscosity ([η]) values for pectin and its derivatives. Dynamic light scattering measurements (DLS) showed that pectin-based polymers formed aggregates in aqueous solution with a unimodal distribution. Critical aggregation concentration (cac) for the hydrophobic pectin derivatives were determined using fluorescence spectroscopy. Atom force microscopy (AFM) images allowed for the investigation of the morphology of polymeric populations obtained in aqueous solution, consisting of flocs and aggregates for crude pectin and its hydrophilic derivatives and well-organized aggregates for lipophilic pectin derivatives. Antimicrobial activity, examined using the disc diffusion method, proved that all polymers were active against Staphylococcus aureus bacterium and Candida albicans yeast

    Thiophene α-Chain-End-Functionalized Oligo(2-methyl-2-oxazoline) as Precursor Amphiphilic Macromonomer for Grafted Conjugated Oligomers/Polymers and as a Multifunctional Material with Relevant Properties for Biomedical Applications

    No full text
    Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2’-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by “direct dissolution”.Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material

    3,4-Ethylenedioxythiophene (EDOT) End-Group Functionalized Poly-ε-caprolactone (PCL): Self-Assembly in Organic Solvents and Its Coincidentally Observed Peculiar Behavior in Thin Film and Protonated Media

    No full text
    End-group functionalization of homopolymers is a valuable way to produce high-fidelity nanostructured and functional soft materials when the structures obtained have the capacity for self-assembly (SA) encoded in their structural details. Herein, an end-functionalized PCL with a π-conjugated EDOT moiety, (EDOT-PCL), designed exclusively from hydrophobic domains, as a functional “hydrophobic amphiphile”, was synthesized in the bulk ROP of ε-caprolactone. The experimental results obtained by spectroscopic methods, including NMR, UV-vis, and fluorescence, using DLS and by AFM, confirm that in solvents with extremely different polarities (chloroform and acetonitrile), EDOT-PCL presents an interaction- and structure-based bias, which is strong and selective enough to exert control over supramolecular packing, both in dispersions and in the film state. This leads to the diversity of SA structures, including spheroidal, straight, and helical rods, as well as orthorhombic single crystals, with solvent-dependent shapes and sizes, confirming that EDOT-PCL behaves as a “block-molecule”. According to the results from AFM imaging, an unexpected transformation of micelle-type nanostructures into single 2D lamellar crystals, through breakout crystallization, took place by simple acetonitrile evaporation during the formation of the film on the mica support at room temperature. Moreover, EDOT-PCL’s propensity for spontaneous oxidant-free oligomerization in acidic media was proposed as a presumptive answer for the unexpected appearance of blue color during its dissolution in CDCl3 at a high concentration. FT-IR, UV-vis, and fluorescence techniques were used to support this claim. Besides being intriguing and unforeseen, the experimental findings concerning EDOT-PCL have raised new and interesting questions that deserve to be addressed in future research

    Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze–Thaw Cycles

    No full text
    The alkaline extraction of hemicelluloses from a mixture of three varieties of wheat straw (containing 40.1% cellulose, 20.23% xylan, and 26.2% hemicellulose) was analyzed considering the following complementary pre-treatments: freeze–thaw cycles, microwaves, and ultrasounds. The two cycles freeze–thaw approach was selected based on simplicity and energy savings for further analysis and optimization. Experiments planned with Design Expert were performed. The regression model determined through the response surface methodology based on the severity factor (defined as a function of time and temperature) and alkali concentration as variables was then used to optimize the process in a multi-objective case considering the possibility of further use for pulping. To show the properties and chemical structure of the separated hemicelluloses, several analytical methods were used: high-performance chromatography (HPLC), Fourier-transformed infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), thermogravimetry and derivative thermogravimetry analysis (TG, DTG), and scanning electron microscopy (SEM). The verified experimental optimization result indicated the possibility of obtaining hemicelluloses material containing 3.40% glucan, 85.51% xylan, and 7.89% arabinan. The association of hot alkaline extraction with two freeze–thaw cycles allows the partial preservation of the hemicellulose polymeric structure
    corecore