189 research outputs found

    Heat shock transcription factor 1 preserves cardiac angiogenesis and adaptation during pressure overload

    Get PDF
    To examine how heat shock transcription factor 1 (HSF1) protects against maladaptive hypertrophy during pressure overload, we subjected HSF1 transgenic (TG), knockout (KO) and wild type (WT) mice to a constriction of transverse aorta (TAC), and found that cardiac hypertrophy, functions and angiogenesis were well preserved in TG mice but were decreased in KO mice compared to WT ones at 4 weeks, which was related to HIF-1 and p53 expression. Inhibition of angiogenesis suppressed cardiac adaptation in TG mice while overexpression of angiogenesis factors improved maladaptive hypertrophy in KO mice. In vitro formation of vasculatures by microvascular endothelial cells was higher in TG mice but lower in KO mice than in WT ones. A siRNA of p53 but not a HIF-1 gene significantly reversed maladaptive hypertrophy in KO mice whereas a siRNA of HIF-1 but not a p53 gene induced maladaptive hypertrophy in TG mice. Heart microRNA analysis showed that miR-378 and miR-379 were differently changed among the three mice after TAC, and miR-378 or siRNA of miR-379 could maintain cardiac adaptation in WT mice. These results indicate that HSF1 preserves cardiac adaptation during pressure overload through p53-HIF-1-associated angiogenesis, which is controlled by miR-378 and miR-379

    Clinical Study on Treatment of Bone Metastasis from Breast Cancer with Method of "Jian Pi Yi Qi Yang Xue Zhi Tong"

    Get PDF
    Objective To explore the therapeutic effect of "jian pi yi qi yang xue zhi tong" for treating bone metastasis of breast cancer and the clinical effect of improving pain symptoms. Methods A total of 80 patients with bone metastases from breast cancer were admitted. They were randomly divided into an observation group and a control group according to the random-number-table method. The control group was treated with zoledronic acid, whereas the observation group was treated with jian pi yi qi yang xue zhi tong prescriptions based on the control group. We compared the differences in the effects of different treatment plans on patients' pain symptoms, physical condition, and quality of life, as well as TNF-α, IL-6, and CRP levels. Results No significant difference was found in pain scores, physical condition scores, sleep quality scores, and quality of life scores, as well as CRP, IL-6, and TNF-α levels between the two groups of patients before treatment (all P > 0.05). At one, two, and four months after treatment, the pain scores of both groups of patients decreased, with the observation group having lower scores than the control group (P < 0.05). The total pain-relief rate of the observation group was higher than that of the control group (P < 0.05). After treatment, the sleep quality scores and the levels of CRP, IL-6, and TNF-α decreased, with the observation group having lower values than the control group (P < 0.05). The physical condition scores and the quality of life scores of both groups improved, with the observation group having higher values than the control group (P < 0.05). Conclusion In patients with bone metastases from breast cancer, oral treatment with jian pi yi qi yang xue zhi tong prescription has a significant effect. It substantially improves the pain symptoms, enhances the quality of sleep and life of patients, and reduces the levels of CRP, IL-6, and TNF-α

    Leukotriene B4 receptor knockdown affects PI3K/AKT/mTOR signaling and apoptotic responses in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) presents a landscape of intricate molecular dynamics. In this study, we focused on the role of the leukotriene B4 receptor (LTB4R) in CRC, exploring its significance in the disease's progression and potential therapeutic approaches. Using bioinformatics analysis of the GSE164191 and the Cancer Genome Atlas-colorectal adenocarcinoma (TCGA-COAD) datasets, we identified LTB4R as a hub gene influencing CRC prognosis. Subsequently, we examined the relationship between LTB4R expression, apoptosis, and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway through cellular and mice experiments. Our findings revealed that LTB4R is highly expressed in CRC samples and is pivotal for determining prognosis. In vitro experiments demonstrated that silencing LTB4R significantly impeded CRC cell viability, migration, invasion, and colony formation. Correspondingly, in vivo tests indicated that LTB4R knockdown led to markedly slower tumor growth in mice models. Further in-depth investigation revealed that LTB4R knockdown significantly amplified the apoptosis in CRC cells and upregulated the expression of apoptosis-related proteins, such as caspase-3 and caspase-9, while diminishing p53 expression. Interestingly, silencing LTB4R also resulted in a significant downregulation of the PI3K/AKT/mTOR signaling pathway. Moreover, pretreatment with the PI3K activator 740Y-P only partially attenuated the effects of LTB4R knockdown on CRC cell behavior, emphasizing LTB4R's dominant influence in CRC cell dynamics and signaling pathways. LTB4R stands out as a critical factor in CRC progression, profoundly affecting cellular behavior, apoptotic responses, and the PI3K/AKT/mTOR signaling pathway. These findings not only shed light on LTB4R's role in CRC but also establish it as a potential diagnostic biomarker and a promising target for therapeutic intervention

    Evaluation of the hepatotoxicity of Psoralea corylifolia L. based on a zebrafish model

    Get PDF
    Objective:Psoralea corylifolia L. (FP) has received increasing attention due to its potential hepatotoxicity.Methods: In this study, zebrafish were treated with different concentrations of an aqueous extract of FP (AEFP; 40, 50, or 60 μg/mL), and the hepatotoxic effects of tonicity were determined by the mortality rate, liver morphology, fluorescence area and intensity of the liver, biochemical indices, and pathological tissue staining. The mRNA expression of target genes in the bile acid metabolic signaling pathway and lipid metabolic pathway was detected by qPCR, and the mechanism of toxicity was initially investigated. AEFP (50 μg/mL) was administered in combination with FXR or a peroxisome proliferator-activated receptor α (PPARα) agonist/inhibitor to further define the target of toxicity.Results: Experiments on toxic effects showed that, compared with no treatment, AEFP administration resulted in liver atrophy, a smaller fluorescence area in the liver, and a lower fluorescence intensity (p &lt; 0.05); alanine transaminase (ALT), aspartate transaminase (AST), and γ-GT levels were significantly elevated in zebrafish (p &lt; 0.01), and TBA, TBIL, total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were elevated to different degrees (p &lt; 0.05); and increased lipid droplets in the liver appeared as fatty deposits. Molecular biological validation revealed that AEFP inhibited the expression of the FXR gene, causing an increase in the expression of the downstream genes SHP, CYP7A1, CYP8B1, BSEP, MRP2, NTCP, peroxisome proliferator-activated receptor γ (PPARγ), ME-1, SCD-1, lipoprotein lipase (LPL), CPT-1, and CPT-2 and a decrease in the expression of PPARα (p &lt; 0.05).Conclusion: This study demonstrated that tonic acid extracts are hepatotoxic to zebrafish through the inhibition of FXR and PPARα expression, thereby causing bile acid and lipid metabolism disorders

    An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of Hand Foot and Mouth Disease in Fuyang city of China

    Get PDF
    Hand, foot and mouth disease (HFMD), a common contagious disease that usually affects children, is normally mild but can have life-threatening manifestations. It can be caused by enteroviruses, particularly Coxsackieviruses and human enterovirus 71 (HEV71) with highly variable clinical manifestations. In the spring of 2008, a large, unprecedented HFMD outbreak in Fuyang city of Anhui province in the central part of southeastern China resulted in a high aggregation of fatal cases. In this study, epidemiologic and clinical investigations, laboratory testing, and genetic analyses were performed to identify the causal pathogen of the outbreak. Of the 6,049 cases reported between 1 March and 9 May of 2008, 3023 (50%) were hospitalized, 353 (5.8%) were severe and 22 (0.36%) were fatal. HEV71 was confirmed as the etiological pathogen of the outbreak. Phylogenetic analyses of entire VP1 capsid protein sequence of 45 Fuyang HEV71 isolates showed that they belong to C4a cluster of the C4 subgenotype. In addition, genetic recombinations were found in the 3D region (RNA-dependent RNA polymerase, a major component of the viral replication complex of the genome) between the Fuyang HEV71 strain and Coxsackievirus A16 (CV-A16), resulting in a recombination virus. In conclusion, an emerging recombinant HEV71 was responsible for the HFMD outbreak in Fuyang City of China, 2008

    Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.)

    Get PDF
    The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein–protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat

    Transcriptome Analysis of H2O2-Treated Wheat Seedlings Reveals a H2O2-Responsive Fatty Acid Desaturase Gene Participating in Powdery Mildew Resistance

    Get PDF
    Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat
    • …
    corecore