19 research outputs found

    The Immunosuppressive Properties of the HIV Vpr Protein Are Linked to a Single Highly Conserved Residue, R90

    Get PDF
    BACKGROUND: A hallmark of AIDS progression is a switch of cytokines from Th1 to Th2 in the plasma of patients. IL-12, a critical Th1 cytokine secreted by antigen presenting cells (APCs) is suppressed by Vpr, implicating it as an important virulence factor. We hypothesize that Vpr protein packaged in the virion may be required for disabling APCs of the first infected mucosal tissues. Consistent with this idea are reports that defects in the C-terminus of Vpr are associated with long-term non-progression. PRINCIPAL FINDINGS: Vpr RNA amplified from various sources was electroporated into monocyte-derived DC and IL-12 levels in supernatants were analyzed. The analysis of previously reported C-terminal Vpr mutations demonstrate that they do not alleviate the block of IL-12 secretion. However, a novel single conservative amino acid substitution, R90K, reverses the IL-12 suppression. Analysis of 1226 Vpr protein sequences demonstrated arginine (R) present at position 90 in 98.8%, with other substitutions at low frequency. Furthermore, none of sequences report lysine (K) in position 90. Vpr clones harboring the reported substitutions in position 90 were studied for their ability to suppress IL-12. Our data demonstrates that none of tested substitutions other than K relieve IL-12 suppression. This suggests a natural selection for sequences which suppress IL-12 secretion by DC and against mutations which relieve such suppression. Further analyses demonstrated that the R90K, as well as deletion of the C-terminus, directs the Vpr protein for rapid degradation. CONCLUSION: This study supports Vpr as an HIV virulence factor during HIV infection and for the first time provides a link between evolutionary conservation of Vpr and its ability to suppress IL-12 secretion by DC. DC activated in the presence of Vpr would be defective in the production of IL-12, thus contributing to the prevailing Th2 cytokine profile associated with progressive HIV disease. These findings should be considered in the design of future immunotherapies that incorporate Vpr as an antigen

    Association between adrenergic receptor genotypes and beta-blocker dose in heart failure patients: analysis from the HF-ACTION DNA substudy

    Get PDF
    Beta-blockers reduce morbidity and mortality in chronic heart failure (HF) patients with reduced ejection fraction. However, there is heterogeneity in the response to these drugs, perhaps due to genetic variations in the β1-adrenergic receptor (ADRβ1). We examined whether the Arg389Gly polymorphism in ADRβ1 interacts with the dose requirements of beta-blockers in patients with systolic HF

    Multiplex RT-PCR Amplification of HIV Genes to Create a Completely Autologous DC-Based Immunotherapy for the Treatment of HIV Infection

    Get PDF
    BACKGROUND: Effective therapy for HIV-infected individuals remains an unmet medical need. Promising clinical trials with dendritic cell (DC)-based immunotherapy consisting of autologous DC loaded with autologous virus have been reported, however, these approaches depend on large numbers of HIV virions to generate sufficient doses for even limited treatment regimens. METHODOLOGY/PRINCIPAL FINDINGS: The present study describes a novel approach for RT-PCR amplification of HIV antigens. Previously, RT-PCR amplification of autologous viral sequences has been confounded by the high mutation rate of the virus which results in unreliable primer-template binding. To resolve this problem we developed a multiplex RT-PCR strategy that allows reliable strain-independent amplification of highly polymorphic target antigens from any patient and requires neither viral sequence data nor custom-designed PCR primers for each individual. We demonstrate the application of our RT-PCR process to amplify translationally-competent RNA encoding regions of Gag, Vpr, Rev and Nef. The products amplified using this method represent a complex mixture of autologous antigens encoded by viral quasispecies. We further demonstrate that DCs electroporated with in vitro-transcribed HIV RNAs are capable of stimulating poly-antigen-specific CD8+ T cell responses in vitro. CONCLUSION/SIGNIFICANCE: This study describes a strategy to overcome patient to patient viral diversity enabling strain-independent RT-PCR amplification of RNAs encoding sequence divergent quasispecies of Gag, Vpr, Rev and Nef from small volumes of infectious plasma. The approach allows creation of a completely autologous therapy that does not require advance knowledge of the HIV genomic sequences, does not have yield limitations and has no intact virus in the final product. The simultaneous use of autologous viral antigens and DCs may provoke broad patient-specific immune responses that could potentially induce effective control of viral loads in the absence of conventional antiretroviral drug therapy

    The effect of aspirin on endothelial progenitor cell biology: Preliminary investigation of novel properties

    No full text
    Abstract Atherosclerosis develops in an environment of endothelial injury and inflammation. Circulating endothelial progenitor cells (EPCs) are required for vascular repair and restoration of normal endothelial function. We tested the hypothesis that the nonselective cyclooxygenase (COX) inhibitor aspirin (ASA) exerts an effect on circulating EPCs. Methods As part of a larger study evaluating the effect of aspirin dose in primary and secondary prevention, subjects (n = 32) were assigned randomly to either 81 mg or 325 mg aspirin daily for two months, and circulating mononuclear cells were enumerated at the beginning of the study and after 2 months using fluorescent antibodies against CD34 and CD133 as well as based on aldehyde dehydrogenase (ALDH) activity. Brachial artery endothelial function via flow-mediated dilation (BAFMD) and light transmittance platelet aggregometry in response to physiologic agonists was also determined. Results Subjects taking aspirin at the time of study entry had a lower numbers of CD133+/34+ cells compared to those not previously exposed (0.01% vs. 0.05% of MNCs, P < 0.03). After 2 months, subjects randomized to 81 vs. 325 mg of ASA had no significant differences in the median numbers of EPCs, although mean numbers trended lower in the high dose group. Patients on chronic ASA therapy continued to have lower numbers of EPCs. Similar effects were observed in CD34 and CD 133 single-positive cells, as well as ALDHbr cells. BAFMD did not differ nor change significantly over time between aspirin dose groups. All patients had decreased ex vivo platelet aggregation in response to arachidonic acid and ADP stimulation. Conclusions Our preliminary studies suggest that aspirin exerts a time-dependent effect on circulating EPCs. Short-term exposure to differing doses of ASA had indeterminate effects on EPCs levels, suggesting that time of ASA exposure may play a more important role than dose. Determining the responsible mechanism(s) and the overall clinical relevance of these findings will require further investigation

    Successful clade-independent amplification of HIV RNA encoding for antigens from infectious plasma.

    No full text
    <p>Panel A: Agarose gel electrophoresis analysis of PCR fragment obtained from three diverse plasma. Amplification from subject plasma infected with Clade B sample. M: 100 bp DNA ladder (Invitrogen). Panel B: Amplification from subject plasma infected with Clade C virus. M: 100 bp DNA ladder (Invitrogen). Panel C: Amplification from subject plasma infected with Clade AG virus. M: AmpliSize DNA ladder (BioRad). Analysis of products obtained after the secondary PCR reaction for Gag, Vpr, Rev, and Nef as marked on the top. Panel D. cDNA obtained in preparative secondary PCR reaction corresponding to Gag, Vpr, Rev, and Nef antigens. M: 100 bp DNA ladder (Invitrogen). The molecular weight of representative DNA bands is indicated on the left. Panel E. RNA corresponding to Gag, Vpr, Rev, and Nef antigens obtained by <i>in vitro</i> transcription using amplified PCR products from subjects plasma. M: molecular weight RNA ladder (Promega), representative marker sizes are indicated on the left. G, V, R, N: in vitro transcribed RNAs for Gag, Vpr, Nef and Nef respectively.</p

    Capture of HIV quasispesies using the developed multiplex RT-PCR approach.

    No full text
    <p>Phylogenetic relationships of nucleotide sequences of isolated full-length Nef clones (Panel A) and amino acid sequences (Panel B). Horizontal scale indicates the number of nucleotide mutations or amino acid substitutions on each clone relative to neighbor clones.</p
    corecore