2 research outputs found

    Exacerbation of acute kidney injury by bone marrow stromal cells from rats with persistent renin-angiotensin system activation

    Get PDF
    Abstract Hypertension and persistent activation of the renin-angiotensin system (RAS) are predisposing factors for the development of acute kidney injury (AKI). Although bone-marrow-derived stromal cells (BMSCs) have shown therapeutic promise in treatment of AKI, the impact of pathological RAS on BMSC functionality has remained unresolved. RAS and its local components in the bone marrow are involved in several key steps of cell maturation processes. This may also render the BMSC population vulnerable to alterations even in the early phases of RAS pathology. We isolated transgenic BMSCs (TG-BMSCs) from young end-organ-disease-free rats with increased RAS activation [human angiotensinogen/renin double transgenic rats (dTGRs)] that eventually develop hypertension and die of end-organ damage and kidney failure at 8 weeks of age. Control cells (SD-BMSCs) were isolated from wild-type Sprague-Dawley rats. Cell phenotype, mitochondrial reactive oxygen species (ROS) production and respiration were assessed, and gene expression profiling was carried out using microarrays. Cells' therapeutic efficacy was evaluated in a rat model of acute ischaemia/reperfusion-induced AKI. Serum urea and creatinine were measured at 24 h and 48 h. Acute tubular damage was scored and immunohistochemistry was used for evaluation for markers of inflammation [monocyte chemoattractant protein (MCP-1), ED-1], and kidney injury [kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL)]. TG-BMSCs showed distinct mitochondrial morphology, decreased cell respiration and increased production of ROS. Gene expression profiling revealed a pronounced pro-inflammatory phenotype. In contrast with the therapeutic effect of SD-BMSCs, administration of TG-BMSCs in the AKI model resulted in exacerbation of kidney injury and high mortality. Our results demonstrate that early persistent RAS activation can dramatically compromise therapeutic potential of BMSCs by causing a shift into a pro-inflammatory phenotype with mitochondrial dysfunction

    Cohort profile:SUPER-Finland – the Finnish study for hereditary mechanisms of psychotic disorders

    No full text
    Abstract Purpose: SUPER-Finland is a large Finnish collection of psychosis cases. This cohort also represents the Finnish contribution to the Stanley Global Neuropsychiatric Genetics Initiative, which seeks to diversify genetic sample collection to include Asian, Latin American and African populations in addition to known population isolates, such as Finland. Participants: 10 474 individuals aged 18 years or older were recruited throughout the country. The subjects have been genotyped with a genome-wide genotyping chip and exome sequenced. A subset of 897 individuals selected from known population sub-isolates were selected for whole-genome sequencing. Recruitment was done between November 2015 and December 2018. Findings to date: 5757 (55.2%) had a diagnosis of schizophrenia, 944 (9.1%) schizoaffective disorder, 1612 (15.5%) type I or type II bipolar disorder, 532 (5.1 %) psychotic depression, 1047 (10.0%) other psychosis and for 530 (5.1%) self-reported psychosis at recruitment could not be confirmed from register data. Mean duration of schizophrenia was 22.0 years at the time of the recruitment. By the end of the year 2018, 204 of the recruited individuals had died. The most common cause of death was cardiovascular disease (n=61) followed by neoplasms (n=40). Ten subjects had psychiatric morbidity as the primary cause of death. Future plans: Compare the effects of common variants, rare variants and copy number variations (CNVs) on severity of psychotic illness. In addition, we aim to track longitudinal course of illness based on nation-wide register data to estimate how phenotypic and genetic differences alter it
    corecore