18 research outputs found

    Slowing and stopping of chemical waves in a narrowing canal

    Full text link
    The propagation of a chemical wave in a narrow, cone-shaped glass capillary was investigated. When a chemical wave propagates from the wider end to the narrower end, it slows, stops, and then disappears. A phenomenological model that considers the surface effect of the glass is proposed, and this model reproduces the experimental trends.Comment: 8 pages, 5 figure

    Oxidative decomposition of ammonium ion with ozone in the presence of cobalt and chloride ions for the treatment of radioactive liquid waste

    Get PDF
    To prevent unexpected accidents at nuclear facilities caused by accumulated ammonium nitrate in an aqueous liquid waste containing ammonium salts and nitric acid, NH4+ in the liquid waste must be decomposed under mild reaction conditions. In this study, we investigated the oxidative decomposition of NH4+ with O-3 at 333 K in the presence of a homogeneous Co2+ catalyst and Cl in the wide pH range of the test solution. The reaction behavior was greatly affected by pH of the test solution. In a basic solution at pH 12, high conversion of NH4+ was obtained even in the absence of Co2+ and Cl, and the main product was NO3. However, Co2+ and Cl in the solution greatly enhanced the decomposition rate of NH4+ in acidic to mild basic solutions (pH 1-8), while only low conversion of NH4+ was observed unless both Co2+ and Cl were present. For the reaction with Co2+ and Cl in the solutions, NH4+ was transformed mainly into chloramines (NHxCl3 x, x = 1-3) by the reaction with HClO, which was formed by the reaction of Cl with O-3 catalyzed by the homogeneous Co2+ catalyst, and led to the high decomposition rate of NH4+. Cl suppressed the formation of the precipitate CoO(OH) during the reaction and consequently the Co2+ catalyst stably existed in the reaction solution, which was another reason for the high decomposition rate of NH4+ in the presence of Cl. Owing to the swift decomposition of NH4+ under mild reaction conditions and small formation of secondary waste, the oxidative decomposition of NH4+ in the presence of the homogeneous Co2+ catalyst and Cl is suitable and applicable for the treatment of the aqueous liquid waste containing ammonium salts and nitric acid

    The role of cobalt oxide or magnesium oxide in ozonation of ammonia nitrogen in water

    Get PDF
    In this study, the reaction mechanisms for ozonation of ammonia nitrogen in the presence of Co3O4 or MgO were investigated. For the reaction over Co3O4, Cl- in the reaction solution was indispensable and ClO- was formed by a non-catalytic oxidation of Cl-. Co3O4 promoted the reaction of NH4+ with ClO- to give the products including NO3-, chloramines and gaseous products. In contrast, Cl- was unnecessary for the reaction with MgO. pH of the reaction solution was maintained at around 9 throughout the reaction owing to partial dissolution of MgO. Ammonia nitrogen was decomposed to mainly NO3(-) by non-catalytic radical reaction involving OH center dot, which was formed by the reaction of OH- with O-3 in weakly basic solution. To keep the reaction solution weakly basic, H+ formed with the decomposition of NH4+ was neutralized. As a result, about the same amount of Mg2+ as that of decomposed ammonia nitrogen was dissolved
    corecore